Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dao thi thanh huyen
Xem chi tiết
Sakura
Xem chi tiết
Trịnh Việt Anh
18 tháng 9 2016 lúc 22:29

k đúng cho mình với:

gọi d là Ư(21n+4;14n+3)

=>21n+4 và 14n+3 chia hết cho d

=>42n+8 và 42n+9 chia hết cho d

=>42n+9-42n+8 chia hết cho d

=>1 chia hết cho d

=>d thuộc ước của 1

=>d thuộc -1 và 1

=>21n+1/14n+3 là phân số tối giản

Đinh Đức Hùng
10 tháng 2 2017 lúc 13:12

Gọi d là ƯCLN(21n + 4;14n + 3) nên ta có :

21n + 4 ⋮ d và 14n + 3 ⋮ d

<=> 2(21n + 4) ⋮ d và 3(14n + 3) ⋮ d

<=> 42n + 8 ⋮ d và 42n + 9 ⋮ d

=> (42n + 9) - (42n + 8) ⋮ d

=> 1 ⋮ d => d = 1

=> \(\frac{21n+4}{14n+3}\) là phân số tối giản ( đpcm )

dao thi thanh huyen
Xem chi tiết
Thành Lê Xuân
Xem chi tiết
Nguyễn Hưng Phát
30 tháng 1 2016 lúc 20:50

Gọi UCLN(21n+4,14n+3)=d

Ta có:21n+4 chia hết cho d

         14n+3 chia hết cho d

=>2(21n+4) chia hết cho d

    3(14n+3) chia hết cho d

=>42n+8 chia hết cho d

    42n+9 chia hết cho d

=>(42n+9)-(42n+8) chia hết cho d

=>1 chia hết cho d

=>d=1

               Vậy \(\frac{21n+4}{14n+3}\) tối giản

Đinh Đức Hùng
30 tháng 1 2016 lúc 21:08

Goi d là ƯCLN ( 21n + 4 ; 14n + 3 )

=> 21n + 4 ⋮ d <=> 42n + 8 ⋮ d 

=> 14n + 3 ⋮ d <=> 42n + 9 ⋮ d 

=> [ ( 42n + 8 ) - ( 42n + 9 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN (21n + 4; 14n + 3) = 1 =>  \(\frac{21n+4}{14n+3}\) là phân số tối giản

 

Nguyen Phan Minh Hieu
Xem chi tiết
Kiệt Nguyễn
10 tháng 3 2019 lúc 15:38

a)                       Giải

Đặt \(d=\left(16n+5,6n+2\right)\)

\(\Rightarrow\hept{\begin{cases}\left(16n+5\right)⋮d\\\left(6n+2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[3\left(16n+5\right)\right]⋮d\\\left[8\left(6n+2\right)\right]⋮d\end{cases}}\)

\(\Rightarrow\left[8\left(6n+2\right)-3\left(16n+5\right)\right]⋮d\)

\(\Rightarrow\left[48n+16-48n-15\right]⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy phân số \(\frac{16n+5}{6n+2}\) tối giản với mọi n.

Kiệt Nguyễn
10 tháng 3 2019 lúc 15:42

b)                            Giải

Đặt \(d=\left(14n+3,21n+4\right)\)

\(\Rightarrow\hept{\begin{cases}\left(14n+3\right)⋮d\\\left(21n+4\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[3\left(14n+3\right)\right]⋮d\\\left[2\left(21n+4\right)\right]⋮d\end{cases}}\)

\(\Rightarrow\left[3\left(14n+3\right)-2\left(21n+4\right)\right]⋮d\)

\(\Rightarrow\left[42n-9-42n-8\right]⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy phân số \(\frac{14n+3}{21n+4}\) tối giản với mọi n.

anh nguyễn
Xem chi tiết
Võ Thị Bích Hằng
19 tháng 3 2018 lúc 20:14

a. A= \(\frac{12n+1}{30n+2}\)

Gọi d là ước chung của 12n +1 và 30n +2

\(\Rightarrow\)12n + 1 \(⋮\)d => 5 (12n + 1) \(⋮\)d    => 60n + 5  \(⋮\)d

\(\Rightarrow\)30n+2 \(⋮\)d = > 2 ( 30n + 2) \(⋮\)d =>   60n + 4\(⋮\)d

\(\Rightarrow\)(60n + 5) - 60n + 4 \(⋮\)d

\(\Rightarrow\)\(⋮\)d

\(\Rightarrow\)d= 1

\(\Rightarrow\)ƯCLN( 12n+ 1; 30n+2)

Vậy 12n+1/ 30n+2 là phân số tối giản

b. B= \(\frac{14n+17}{21n+25}\)

gọi d là ước chung của 14n+ 17 và 21n + 25

=> 14n+ 7 \(⋮\)d => 3(14n+17) \(⋮\)d => 42n + 51 \(⋮\)d

=> 21n+ 25 \(⋮\)d =.> 2(21n + 5) \(⋮\)d =.> 42n +  50 \(⋮\)d

=.> 42n + 51 - (42n + 50) \(⋮\)d

=> 1 \(⋮\)d

=> d= 1

vậy 14n + 17/  21n + 25 là phân số tối giản

Võ Thị Bích Hằng
19 tháng 3 2018 lúc 20:29

có chỗ ( 60n +5) - 60n + 4 là sai ấy nhé!

đúng là 60n + 5 - ( 60n + 4 ) mới đúng

nhớ k cho mik nha

❊ Linh ♁ Cute ღ
14 tháng 7 2018 lúc 14:06

a

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮dd=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản 

Hà Anh Nguyễn
Xem chi tiết
Khánh Vy
14 tháng 11 2018 lúc 21:45

a, n và 2n + 1 

gọi d là ƯC( n;2n+1 ) 

=> ƯCLN( n;2n+1 ) = d

=> n \(⋮\) 

   2n + 1 \(⋮\) 

đê : : n \(⋮\) d => 2.n \(⋮\) d = 2n chia hết cho d

ta có : 2n + 1 - 2n 

     => 1 chia hết cho d

=> d = 1

vậy n và 2n + 1 là hai số nguyên tố cùng nhau ( sai thui )

Khánh Vy
15 tháng 11 2018 lúc 10:14

b, 2n  + 3 và 4n + 8

gọi d là ƯCLN( 2n + 3 ; 4n +  8 )

=> ƯCLN ( 2n + 3 ; 4n + 8 ) = d

=> 2n + 3 chia hết cho d

    4n + 8 chia hết cho d

để : 2n + 3 chi chia hết cho d => 4n + 6 chia hết cho d

ta có : 4n + 8 - 4n + 6 chia hết cho d

=> 2 chia hết cho d => d thuộc Ư(2); Ư(2)= { 1 ; 2 }

=> d = 1 HOẶC 2

vậy 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau

TRẦN MINH NGỌC
Xem chi tiết
Nguyễn Đặng Thái Linh
Xem chi tiết