29.31 - 2300 + 29 . 69
2 + 4 + 6 + ...+ 100
Tính nhẩm bằng cách nhân cả số bị chia và số chia với cùng một số thích hợp
VD: 2100 : 50 = ( 2100 . 2) : (50.2) = 4200 : 100 = 42
1) 2300 : 50 2) 112 : 2 3) 2300 : 4
4) 3500 : 25
5) 1200 : 75
6) 2100 : 75
7) 320 : 8
Ghi cách giải giống ví dụ ở trên
1) 2300 : 50 = ( 2300 . 2 ) : ( 50 . 2 ) = 4600 : 100 = 46
2) 112 : 2 = ( 112 . 5 ) : ( 2 . 5 ) = 560 : 10 = 56
3) 2300 : 4 = ( 2300 . 25 ) : ( 4 . 25 ) = 57500 : 100 = 575
4) 3500 : 25 = ( 3500 . 4 ) : ( 4 . 25 ) = 14000 : 100 = 140
5) 1200 : 75 = ( 1200 . 4 ) : ( 4 . 75 ) = 4800 : 300 = 6
6) 2100 : 75 = ( 2100 . 4 ) : ( 4 . 75 ) = 8400 : 300 = 28
7) 320 : 8 = ( 320 . 5 ) : ( 8 . 5 ) = 1600 : 40 = 40
1) 2300 : 50 = (2300.2) : (50.2) = 4600 : 100 = 46
2) 112: 2 = ( 112.5) : (2.5) = 560 : 10 = 56
3) 2300 : 4 = ( 2300.25) : (4.25) = 57500 : 100 = 575
4)3500 : 25 = (3500.4) : (25.4) = 14000 : 100 = 140
5)1200 : 75 = ( 1200 : 3) : (75:3) = 400 : 25 = (400.4) : (25.4) = 1600 : 100 = 16
...
1) 2300 : 50 = ( 2300 . 2 ) : ( 50 . 2 ) = 4600 : 100 = 46
2) 112 : 2 = ( 112 . 5 ) : ( 2 . 5 ) = 560 : 10 = 56
3) 2300 : 4 = ( 2300 . 25 ) : ( 4 . 25 ) = 57500 : 100 = 575
4) 3500 : 25 = ( 3500 . 4 ) : ( 4 . 25 ) = 14000 : 100 = 140
5) 1200 : 75 = ( 1200 . 4 ) : ( 4 . 75 ) = 4800 : 300 = 6
6) 2100 : 75 = ( 2100 . 4 ) : ( 4 . 75 ) = 8400 : 300 = 28
7) 320 : 8 = ( 320 . 5 ) : ( 8 . 5 ) = 1600 : 40 = 40
Kết quả của phép tính: 2300 : 100 = …. ?
A. 23
B. 230
C. 203
D. 230000
Bài 6: ( 1 điểm)
Cho A = 4 + 22 + 23 + ...+ 2300. Chứng tỏ rằng A là một lũy thừa cơ số 2.
Bài 6: ( 1 điểm)
Cho A = 4 + 22 + 23 + ...+ 2300. Chứng tỏ rằng A là một lũy thừa cơ số 2.
Lời giải:
$(2300-22):1+1=2279$
Tổng $A$ là:
$4+\frac{(2300+22).2279}{2}=2645923$. Số này lẻ nên không thể là lũy thừa cơ số 2.
Bài 6: ( 1 điểm)
Cho A = 4 + 22 + 23 + ...+ 2300. Chứng tỏ rằng A là một lũy thừa cơ số 2.
hỏi nhanh đang thi
cho hỏi đi mừ
thi với thằng em đúng là thất bại khi nó là con gái
Tính các tổng sau
A = 3/4.7 + 4/7.11 + 4/11.15 + ... + 4/100.104
B = 1/25.27 + 1/27.29 + 1/29.31 +...+ 1/73.75
C = 6/15.18 + 6/18.21 + 6/21.24 +...+6/87.90
Các ban ơi dấu chấm là dấu nhân nhé nhớ giải giúp mình nhé mình thank you các bạn nhiều lắm
\(A=\frac{3}{4\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{100\cdot104}\)
\(A=\frac{7-4}{4\cdot7}+\frac{11-7}{7\cdot11}+\frac{15-11}{11\cdot15}+...+\frac{104-100}{100\cdot104}\)
\(A=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(A=\frac{1}{4}-\frac{1}{104}\)
\(A=\frac{25}{104}\)
\(B=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+\frac{1}{29\cdot31}+...+\frac{1}{73\cdot75}\)
\(B\cdot2=\left(\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+\frac{1}{29\cdot31}+...+\frac{1}{73\cdot75}\right)\cdot2\)
\(B\cdot2=\frac{2}{25\cdot27}+\frac{2}{27\cdot29}+\frac{2}{29\cdot31}+...+\frac{2}{73\cdot75}\)
\(B\cdot2=\frac{27-25}{25\cdot27}+\frac{29-27}{27\cdot29}+\frac{31-29}{29\cdot31}+...+\frac{75-73}{73\cdot75}\)
\(B\cdot2=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\)
\(B\cdot2=\frac{1}{25}-\frac{1}{75}\)
\(B\cdot2=\frac{2}{75}\)
\(B=\frac{2}{75}\frac{\cdot}{\cdot}2\)
\(B=\frac{1}{75}\)
\(C=\frac{6}{15\cdot18}+\frac{6}{18\cdot21}+\frac{6}{21\cdot24}+...+\frac{6}{87\cdot90}\)
\(\frac{C}{2}=\frac{3}{15\cdot18}+\frac{3}{18\cdot21}+\frac{3}{21\cdot24}+...+\frac{3}{87\cdot90}\)
\(\frac{C}{2}=\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\)
\(\frac{C}{2}=\frac{1}{15}-\frac{1}{90}\)
\(\frac{C}{2}=\frac{1}{18}\)
\(C=\frac{1}{18}\cdot2\)
\(C=\frac{1}{9}\)
- Tính nhanh theo các hằng đẳng thức các số sau:
a) 19.21; 29.31; 39.41
b) 292 - 82; 562 - 462; 672 - 562
a,19.21=(20-1)(20+1)=202-12=400-1=399
29.31=(30-1)(30+1)=302-12=900-1=899
39.41=(40-1)(40+1)=402-12=1600-1=1599
cho M= \(\dfrac{6}{10.13}+\dfrac{6}{13.16}+\dfrac{6}{16.19}+\dfrac{6}{19.21},\)N = \(\dfrac{1}{20.23}+\dfrac{1}{23.26}+\dfrac{1}{26.29}+\dfrac{1}{29.31}\) tính tỉ số \(\dfrac{M}{N}\)
\(M=\dfrac{6}{10.13}+\dfrac{6}{13.16}+\dfrac{6}{16.19}+\dfrac{6}{19.21}\)
\(\dfrac{1}{2}M=\dfrac{3}{10.13}+\dfrac{3}{13.16}+\dfrac{3}{16.19}+\dfrac{3}{19.21}\)
\(\dfrac{1}{6}M=\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{21}\)
\(\dfrac{1}{6}M=\dfrac{1}{10}-\dfrac{1}{21}\)
\(M=\dfrac{11}{210}:\dfrac{1}{6}=\dfrac{11}{35}\)
\(N=\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{30}\)
\(=\dfrac{1}{20}-\dfrac{1}{30}\)
\(=\dfrac{1}{60}\)
\(\dfrac{M}{N}=\dfrac{11}{35}:\dfrac{1}{60}=\dfrac{132}{7}\)= \(\dfrac{132}{25}\)
tính:
1/25.27+1/27.29+1/29.31+...+1/73.75
4/2.4 + 4/4.6 +4/6.8 +...+ 4/2008.2010
a, \(\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(=\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(=\frac{1}{2}\left(\frac{2}{75}\right)\)
\(=\frac{1}{75}\)
b, \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1004}{2010}\right)\)
\(=2\left(\frac{502}{1005}\right)\)
\(=\frac{1004}{1005}\)
Tk hộ =v
\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}=\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}.\frac{2}{75}=\frac{1}{75}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)=2.\left(\frac{1}{2}-\frac{1}{2010}\right)=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
\(=\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\left(\frac{3}{75}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\frac{2}{75}\)
\(=\frac{1}{75}\)
Câu dưới đặt 2 ra ngoài rồi làm bình thường.