Cho a>0, b>0 và a+b=1
Tìm giá trị nhỏ nhất của Q= a3+b3+\(\frac{4}{ab}\)-ab
tìm giá trị lớn nhất và giá trị nhỏ nhất của M = ab/a+b
Cho x+y=1 , x>0 , y>0 . Tìm giá trị nhỏ nhất của biểu thức P= \(\frac{a^2}{x}+\frac{b^2}{y}\) (a và b là hằng số dương đã cho)
Áp dụng bđt \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) được
\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
Dấu "=" khi ay = bx
Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :
\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .
Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :
\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .
Bài 4 : Cho các số dương a,b,c . Chứng minh :
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1
Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)
Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
neu de bai bai 1 la tinh x+y thi mik lam cho
đăng từng này thì ai làm cho
We have \(P=\frac{x^4+2x^2+2}{x^2+1}\)
\(\Rightarrow P=\frac{x^4+2x^2+1+1}{x^2+1}\)
\(=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)
\(=\left(x^2+1\right)+\frac{1}{x^2+1}\)
\(\ge2\sqrt{\frac{x^2+1}{x^2+1}}=2\)
(Dấu "="\(\Leftrightarrow x=0\))
Vậy \(P_{min}=2\Leftrightarrow x=0\)
cho phương trình \(x^2-2mx+2m-1=0\)
a) tính giá trị biểu thức \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}\) theo m
b)tính giá trị lớn nhất và giá trị nhỏ nhất của B
Bài 5 : Cho a và b là các số nguyên có 2 chữ số . Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của tổng a + b ?
số lớn nhất có 2 cs là 99 thì a+b=9+9=18
số bé nhất có 2 cs là -99 thì a+b=(-9)+(-9)=-18
Bài 1tìm giá trị nhỏ nhất
A= x2+4x+100
Bài 2 tìm giá trị lớn nhất
B= -2x2 +6x-4
giúp mk với
\(A=x^2+4x+100\)
\(A=x^2+2.x.2+2^2+96\)
\(A=\left(x+2\right)^2+96\)
\(\left(x+2\right)^2+96\le0\)
\(\left(x+2\right)^2+96\le96\)
\(\Leftrightarrow A\le96\)
\(A_{min}\Leftrightarrow A=10\)
Dấu "=" xảy ra : \(\left(x+2\right)^20\)
\(x+2=0\)
\(x=-2\)
Thay hộ mik cái dấu \(\le\)thành dấu \(\ge\)vs ak
Bài làm
A = x2 + 4x + 100
A = ( x2 + 2 . x . 2 + 4 + 96 )
A = ( x2 + 2 . x . 2 + 22 ) + 96
A = ( x + 2 )2 + 96 > 96 V x
Dấu " = " xảy ra <=> ( x + 2 )2 = 0
x + 2 = 0
x = 0 - 2
x = -2
Vậy AMin = 96 khi x = -2
# Học tốt #
Xét 2 số dương a, b tùy ý. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{\left(a+b\right)^4}{a^2+b^2}+\frac{8}{ab}\)
Xét 2 số dương a, b tùy ý. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{\left(a+b\right)^4}{a^2+b^2}+\frac{8}{ab}\)
Xét 2 số dương a, b tùy ý. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{\left(a+b\right)^4}{a^2+b^2}+\frac{8}{ab}\)