Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Nguyễn Cao
Xem chi tiết
Quốc Công Trần
Xem chi tiết
hoàng ngân
Xem chi tiết
buiphuongnam
Xem chi tiết
Phan Thanh Tịnh
Xem chi tiết
Nguyễn Hưng Phát
29 tháng 6 2016 lúc 9:24

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)

Ngọc Vĩ
29 tháng 6 2016 lúc 9:20

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}\)

Ta có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=a+b+c\)             

Le Thi Khanh Huyen
29 tháng 6 2016 lúc 9:22

Ngocj Vix sai rooif, \(\frac{2a}{a}=\frac{2b}{b}=\frac{2c}{c}=2\)

titanic
Xem chi tiết
pham trung thanh
9 tháng 12 2017 lúc 16:07

Từ \(a+b+c=0\) bạn tự chứng minh \(a^3+b^3+c^3=3abc\)

Đặt \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)

\(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=1+\frac{c}{a-b}\frac{\left(a-b\right)\left(c-a-b\right)}{ab}\)

                   \(=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)

Tương tự, ta có: \(A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)

người bí ẩn
Xem chi tiết
Phạm Thu Hương
11 tháng 5 2018 lúc 17:30

Ta có a+b+c>(a+b+c):1

=>a>1, b<1, c>1

=>.. dpcm

Đinh quang hiệp
11 tháng 5 2018 lúc 20:31

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=\frac{bc+ac+ab}{1}=bc+ac+ab\Rightarrow a+b+c>bc+ac+ab\)

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(ab-a-b+1\right)\left(c-1\right)=abc-ac-bc+c-ab+a+b-1\)

\(=1-1+a+b+c-ac-bc-ab=a+b+c-\left(ac+bc+ab\right)\)

vì \(a+b+c>bc+ac+ab\)(chứng minh trên)\(\Rightarrow a+b+c-\left(bc+ac+ab\right)>0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

Pham Quoc Cuong
11 tháng 5 2018 lúc 21:50

Ta có: \(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=ab+bc+ca\) 

\(\Rightarrow a+b+c>ab+bc+ca\) 

\(\Leftrightarrow a+b+c-ab-bc-ca>0\) 

\(\Leftrightarrow abc+a+b+c-ab-bc-ca-1>0\) 

\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+\left(c-1\right)>0\) 

\(\Leftrightarrow\left(c-1\right)\left(ab-a-b+1\right)>0\) 

\(\Leftrightarrow\left(c-1\right)\left(b-1\right)\left(a-1\right)>0\) 

*ĐPCM*

Thắng Nguyễn
Xem chi tiết
Đoàn Cẩm Ly
25 tháng 8 2016 lúc 16:17

Theo bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}\ge\frac{9}{a+b+c}-\frac{4}{a+b+c}\)\(=\frac{5}{a+b+c}\ne0\)\(\Rightarrowđpcm\)

k cho minh nha

Mr Lazy
29 tháng 8 2016 lúc 7:57

Bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) chỉ đúng với x, y, z dương.

phạm quỳnh anh
Xem chi tiết