Cho \(a\ne b\ne c\ne0\) và \(\frac{a+1}{b}=\frac{b+1}{c}=\frac{c+1}{a}\)
Tính abc ?
Ai bít giúp mình nha , cảm ơn mọi người
Cho \(a\ne b\ne c\)và \(abc\ne0\)
Tính \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)biết a(a-b) = b(b-c) = c(c-a)
\(Cho:\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)
\(and........a\ne b\ne c........a,b,c\ne0\)
Tính \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
cho a,b,c,d \(\ne\) 0 và a2=bc
CMR \(\frac{a^2+c^2}{b^2+d^2}=\frac{c}{b}\)
GIÚP MIK NHA MỌI NGƯỜI ...MIK CẢM ƠN
\(\frac{a}{c}=\frac{a-b}{b-c}\left(a;c\ne0;a\ne b;b\ne c\right)\)
\(Cmr:\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\)
Biết \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\left(a\ne b\ne c;abc\ne0\right)\), tính \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}\)
Ta có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=a+b+c\)
Ngocj Vix sai rooif, \(\frac{2a}{a}=\frac{2b}{b}=\frac{2c}{c}=2\)
Cho \(a\ne b\ne c\ne0\)và\(a+b+c=0\)Tính:
\(A=\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right).\left(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
Từ \(a+b+c=0\) bạn tự chứng minh \(a^3+b^3+c^3=3abc\)
Đặt \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)
\(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=1+\frac{c}{a-b}\frac{\left(a-b\right)\left(c-a-b\right)}{ab}\)
\(=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)
Tương tự, ta có: \(A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)
cho tích abc=1 và a+b+c>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).CMR (a-1).(b-1).(c-1)>0.giúp mình với nha cảm ơn nhiều^^
Ta có a+b+c>(a+b+c):1
=>a>1, b<1, c>1
=>.. dpcm
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=\frac{bc+ac+ab}{1}=bc+ac+ab\Rightarrow a+b+c>bc+ac+ab\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(ab-a-b+1\right)\left(c-1\right)=abc-ac-bc+c-ab+a+b-1\)
\(=1-1+a+b+c-ac-bc-ab=a+b+c-\left(ac+bc+ab\right)\)
vì \(a+b+c>bc+ac+ab\)(chứng minh trên)\(\Rightarrow a+b+c-\left(bc+ac+ab\right)>0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
Ta có: \(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=ab+bc+ca\)
\(\Rightarrow a+b+c>ab+bc+ca\)
\(\Leftrightarrow a+b+c-ab-bc-ca>0\)
\(\Leftrightarrow abc+a+b+c-ab-bc-ca-1>0\)
\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+\left(c-1\right)>0\)
\(\Leftrightarrow\left(c-1\right)\left(ab-a-b+1\right)>0\)
\(\Leftrightarrow\left(c-1\right)\left(b-1\right)\left(a-1\right)>0\)
*ĐPCM*
Cho a, b, c \(\in\)R và a, b, c \(\ne\)0. CMR: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}\ne0\)
Theo bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}\ge\frac{9}{a+b+c}-\frac{4}{a+b+c}\)\(=\frac{5}{a+b+c}\ne0\)\(\Rightarrowđpcm\)
k cho minh nha
Bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) chỉ đúng với x, y, z dương.
cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b,c\ne0;b\ne c\right)\)) chứng minh rằng : \(\frac{a}{b}=\frac{a-c}{c-b}\)