5/5.10+ 5/10.15+......+5/45.50
\(\frac{5}{5.10}\)+\(\frac{5}{10.15}\)+...+ \(\frac{5}{45.50}\)
\(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{45.50}\)
\(=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{45}-\frac{1}{50}\)
\(=\frac{1}{5}-\frac{1}{50}=\frac{10}{50}-\frac{1}{50}=\frac{9}{50}\)
\(=\frac{10-5}{5.10}+\frac{15-10}{10.15}+...+\frac{50-45}{45.50}\)
\(=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{45}-\frac{1}{50}\)
\(=\frac{1}{5}-\frac{1}{50}=\frac{9}{50}\)
\(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{45.50}\)
\(=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{45}-\frac{1}{50}\)
\(=\frac{1}{5}-\frac{1}{50}=\frac{10}{50}-\frac{1}{50}\)
\(=\frac{9}{50}\)
~ Rất vui vì giúp đc bn ~
\(a=\frac{3}{5.10}+\frac{3}{10.15}+\frac{3}{15.20}+...+\frac{3}{45.50}\)= ?
\(a=3\left(\frac{1}{5.10}+\frac{1}{10.15}+...+\frac{1}{45.50}\right)\)
\(a=\frac{3}{5}\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{45.50}\right)\)
\(a=\frac{3}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{45}-\frac{1}{50}\right)\)
\(a=\frac{3}{5}.\left(\frac{1}{5}-\frac{1}{50}\right)\)
\(a=\frac{3}{5}\cdot\frac{9}{50}\)
\(a=\frac{27}{250}\)
5/5.10+5/10.15+5/15.20+...+5/2015.2020(giup to vs)
=(5/5-5/10+5/10-5/15+.........+5/2015-5/2020)
=(1/5-1/10+1/10-1/20+.......+1/2015-1/2020)
=1/5-1/2020
=403/2020
ai tích mk mk vs
\(\frac{5}{5.10}+\frac{5}{10.15}+.............+\frac{5}{2015.2020}\)
\(=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+..............+\frac{1}{2015}-\frac{1}{2020}\)
\(=\frac{1}{5}-\frac{1}{2020}\)
\(=\frac{403}{2020}\)
5/5.10+5/10.15+5/15.20+...+5/2015.2020
=5(1/5.10+1/10.15+1/15.20+...+1/2015.2020) khoang cach tu 5-10;10-15;...;2015-2020 la 5 suy ra
=5/5(1/5-1/10+1/10-1/15+1/15-1/20+...+1/2015-1/2020) ; (-1/5+1/5;-1/10+1/10;-1/15+1/15;-1/20+1/20;... bang 0)
=1(1/5-1/2020)=2015/10100=403/2020
Tính
B = 5/5.10 + 5/ 10.15 + 5/ 15.20 + ....... + 5/ 95.100
\(B=\frac{5}{5\cdot10}+\frac{5}{10\cdot15}+...+\frac{5}{95\cdot100}\)
\(B=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)
\(B=\frac{1}{5}-\frac{1}{100}\)
\(B=\frac{19}{100}\)
\(B=\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{95.100}\)
\(B=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)
\(B=\frac{1}{5}-\frac{1}{100}\)
\(B=\frac{19}{100}\)
b=\(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{95.100}\)
b=\(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{`1}{100}\)
b=\(\frac{1}{5}-\frac{1}{100}\)
b=\(\frac{19}{100}\)
hoc tot nha bn !
tính
P=\(\dfrac{5}{5.10}+\dfrac{5}{10.15}+\dfrac{5}{15.20}+...+\dfrac{5}{95.100}\)
\(P=\dfrac{5}{5.10}+\dfrac{5}{10.15}+...+\dfrac{5}{95.100}\)
\(\Rightarrow P=\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+...+\dfrac{1}{95}-\dfrac{1}{100}\)
\(\Rightarrow P=\dfrac{1}{5}-\dfrac{1}{100}\)
\(\Rightarrow P=\dfrac{19}{100}\)
Vậy \(P=\dfrac{19}{100}\)
Cho M = 1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20
N= 5^2/5.10 + 5^2/10.15 + ... + 5^2/2000.2005 + 5^2/2005.2010
a) Tính tổng N
b) So sánh M và N
a) ta có công thức \(\frac{a}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
ta có \(N=\frac{5^2}{5.10}+\frac{5^2}{10.15}+...+\frac{5^2}{2005.2010}\)
\(N=5\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{2005.2010}\right)\)
\(N=5\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)(sử dụng quy tắc dấu ngoặc)
\(N=5\left[\frac{1}{5}-\left(\frac{1}{10}-\frac{1}{10}\right)-\left(\frac{1}{15}-\frac{1}{15}\right)-...-\left(\frac{1}{2005}-\frac{1}{2005}\right)-\frac{1}{2010}\right]\)
\(N=5\left[\frac{1}{5}-0-0-...-0-\frac{1}{2010}\right]\)
\(N=5\left[\frac{1}{5}-\frac{1}{2010}\right]\)
\(N=5.\frac{401}{2010}\)
\(N=\frac{401}{402}\)
b) \(M=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
ta thấy \(\frac{1}{11}=\frac{1}{11}\)
\(\frac{1}{12}
tinh gia tri cua bieu thuc sau roi ghi ket qua vao o
A=\(\sqrt[5]{\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2005.2010}}\)
Cho: \(M=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{19}+\dfrac{1}{20}\) ; \(N=\dfrac{5^2}{5.10}+\dfrac{5^2}{10.15}+...+\dfrac{5^2}{2000.2005}+\dfrac{5^2}{2005.2010}\)
a) Tính tổng N
b) So sánh M và N
Các bạn giải ra từng bước dùm mik nha
Thanks m.n
Cho\(M=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\)
\(N=\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{2000.2005}+\frac{5}{2005.2010}\)
So sánh M và N
Giúp mình ý!!!!
Những ai trả lời hợp lý mình cho like nha!!!