Cho x,y,z >0 thỏa mãn x+y+z=3 Tìm min A = \(\frac{x+y}{xyz}\)
Cho x,y,z > 0 thỏa mãn \(3\left(x+y+z\right)+4\le\frac{27}{4}xyz\) Tìm min P = x+y+z
\(3\left(x+y+z\right)+4\le\frac{27}{4}xyz\le\frac{1}{4}\left(x+y+z\right)^3\)\(\Leftrightarrow\)\(\left(x+y+z-4\right)\left(x+y+z+2\right)^2\ge0\)
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
bạn vào trang này nhé có bài như thến này đấy
//123doc.org//document/3173507-ren-luyen-chuyen-de-tim-maxmin-on-thi-thpt-quoc-gia.htm
tính diện tích hình vẽ dưới đây
Cho 3 số thực dương thỏa mãn x , y ,z thỏa mãn điều kiện x + y + z = xyz . Tìm Min của biểu thức
\(Q =\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)
- Đề thi vào 10 Thanh Hóa 2020 - 2021 -
Từ giả thiết ta có :
\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)
\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)
Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Dấu " = " xảy ra khi và chỉ khi a = b = c
Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)
Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)
Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)
cho x,y,z là các số dương thỏa mãn xyz=1
Tìm min M=\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(x+z\right)}+\frac{1}{z^3\left(x+y\right)}\)
a,Cho 5 số nguyên .CMR: Tồn tại một số chia hết cho 5 hoặc một vài số có tổng chia hết cho 5.
b,Cho x,y,z >0 thỏa mãn xyz=1.Tìm min :
M=1/(x^3 (y+z))+1/(y^3 (z+x))+1/(z^3 (x+y))
a)
b)Từ \(xyz=1\Rightarrow x=\frac{1}{zy};y=\frac{1}{xz};z=\frac{1}{xy}\)
\(M=\frac{z^2y^2}{x\left(z+y\right)}+\frac{x^2z^2}{y\left(x+z\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)
\(\ge\frac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\frac{xy+yz+xz}{2}\)(Bđt Cauchy-Schwarz)
\(\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)(Bđt Cosi)
Dấu = khi \(x=y=z=1\)
a) Gọi 5 số là: \(a_0,a_1,a_2,a_3,a_4\)
Lấy \(T_0=a_0\)
\(T_1=a_0+a_1\)
\(T_2=a_0+a_1+a_2\)
\(T_3=a_0+a_1+a_2+a_3\)
\(T_4=a_0+a_1+a_2+a_3+a_4\)
Trong 5 số: \(T_0,T_1,T_2,T_3,T_4\) có 2 trường hợp sau xảy ra:
TH1: Tồn tại 1 số \(T_i\) chia hết cho 5 => Điều phải chứng minh
TH2: Không có số nào chia hết cho 5 => Trong 5 số đó có 2 số khi chia cho 5 có cùng một số dư (theo nguyên lí Direchlet, vì 5 số đều không chia hết cho 5 nên khi chia cho 5 sẽ cho 4 số dư là {1, 2, 3,4}). Giả sử \(T_i\) và \(T_j\)(với i < j) chia cho 5 có cùng số dư => Hiệu \(T_j-T_i\) chia hết cho 5. Mà hiệu \(T_j-T_i=a_{i+1}+a_{i+2}+...+a_j\) chia hết cho 5 => Điều phải chứng minh.
Cho các số dương x,y,z thỏa mãn xyz=1. Tìm Min \(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)
\(P\ge\dfrac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\dfrac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\dfrac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)
\(P\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3}.3\sqrt[3]{\dfrac{1}{\sqrt{xy.yz.zx}}}=3\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Ta có bất đẳng thức sau \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0.\)
Do đó:
\(P=\sum\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\sum\dfrac{\sqrt{xyz+xy\left(x+y\right)}}{xy}\)
\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\dfrac{1}{\sqrt{xy}}\cdot\dfrac{1}{\sqrt{yz}}\cdot\dfrac{1}{\sqrt{zx}}}=3\sqrt{3}\)
Đẳng thức xảy ra khi $x=y=z=1.$
Áp dụng BĐT AM-GM:
\(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)
\(\ge\dfrac{\sqrt{3xy}}{xy}+\dfrac{\sqrt{3yz}}{yz}+\dfrac{\sqrt{3zx}}{zx}\)
\(=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\)
\(\ge\sqrt{3}.3\sqrt[3]{\dfrac{1}{xyz}}=3\sqrt{3}\)
\(minP=3\sqrt{3}\Leftrightarrow x=y=z\)
Cho x,y,z >0 thỏa mãn x+y+z=2
Tìm min \(P=\frac{x^2}{y+z}+\frac{z^2}{x+y}+\frac{y^2}{z+x}\)
Dễ dàng CM được BĐT sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)(BĐT Nestbit)
Vậy: \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge3\)
\(\Leftrightarrow P+a+b+c\ge3\Leftrightarrow P\ge3-2=1\)
Vậy Min P=1 <=> x=y=z=\(\frac{2}{3}\)
CHo x, Y, Z >0 THỎA MÃN x+y+z=1. tìm min \(\frac{1}{x}+\frac{1}{y}+\frac{9}{z}\)
Áp dụng Cauchy Schwarz
\(A=\frac{1}{x}+\frac{1}{y}+\frac{9}{z}\)
\(\ge\frac{\left(1+1+3\right)^2}{x+y+z}=\frac{25}{x+y+z}=25\)
Đẳng thức xảy ra bạn tự giải
Cho x, y, z > 0 thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2018\)
Tìm min \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Đặt \(\sqrt{x^2+y^2}=c;\sqrt{y^2+z^2}=a;\sqrt{z^2+x^2}=b\)
Ta có:
\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\frac{y^2}{\sqrt{2\left(z^2+x^2\right)}}+\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
\(=\frac{1}{2\sqrt{2}}\left(\frac{c^2+b^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}+\frac{b^2+a^2-c^2}{c}\right)\)
\(\ge\frac{1}{2\sqrt{2}}\left(\frac{\left(2a+2b+2c\right)^2}{2\left(a+b+c\right)}-2018\right)=\frac{1009}{\sqrt{2}}\)