Cho thang cân có đường chéo BD vuông góc vs cạnh bên BC và BD là phân giác D , cho BC = 3cm . Tính chu vi hình thang
GIÚP MÌNH NHÉ MN , MÌNH ĐANG CẦN GẤP LẮM Ạ !!!
Cho thang cân có đường chéo BD vuông góc vs cạnh bên BC và BD là phân giác D , cho BC = 3cm . Tính chu vi hình thang
GIÚP MÌNH NHÉ MN , MÌNH ĐANG CẦN GẤP LẮM Ạ !!!
hình thang ABCD
=> AD=BC = 3cm ( định lí 1 )
AB//CD ( ABCD là hình thang cân )
=> góc B1 = góc D2 ( SLT )
góc D1 = góc D2 ( gt )
=> góc B1 = góc D1
=> tg ABD cân tại A
=> AD=AB= 3cm
tg DBC vuông ở B
hình thang cân ABCD
=> góc D = góc C
2 lần góc D1 = góc C
=> góc DBC = góc D1 + 2 lần góc D1 = 90 độ
3 lần góc D1 = 90 độ
=> góc D1 = 900 : 3
= 300
=> góc C = 900 - góc D1 = 900 - 300 = 600
Gọi DA giao CB tại O
tg ODC có DB là pgiác
BD vuông góc với Oc
=> tg ODC cân ở D
lại có góc C = 60 độ
=> tg OCD đều
=> CD = CO
mà tg ODC đều nên DB là đường phân giác đồng thời là đường trung tuyến
=> OB= BC
CD= CO = OB+BC
mà OB = BC ( cmt )
=> CĐ= CƠ = 2CB = 2.3 = 6 ( cm )
Chu vi của hình thang cân ABCD là
AB+BC+AD+CD = 3+3+3+6= 15 (cm )
cho hình thang abcd là hình thang cân có đường chéo bd vuông góc với cạnh bên bc,bd là tia phân giác của góc d tính chu vi hình thng biết bc=3cm
Cho hình thang cân ABCD có đường chéo BD vuông góc với cạnh bên BC và DB là tia phân giác của góc D. Tính chu vi hình thang biết BC = 3cm.
Hình thang cân ABCD có đường chéo BD vuông góc với cạnh bên BC, BD là tia phân giác của-góc D. Tính chu vi của hình thang, biết BC = 3cm.
Ta có: AD = BC = 3 (cm) (tính chất hình thang cân)
∠ (ABD) = ∠ (BDC) (so le trong)
∠ (ADB) = ∠ (BDC) ( do DB là tia phân giác của góc D )
⇒ ∠ (ABD) = ∠ (ADB)
⇒ ∆ ABD cân tại A
⇒ AB = AD = 3 (cm)
∆ BDC vuông tại B
∠ (BDC) + ∠ C = 90 0
∠ (ADC) = ∠ C (gt)
Mà ∠ (BDC) = 1/2 ∠ (ADC) nên ∠ (BDC) = 1/2 ∠ C
∠ C + 1/2 ∠ C = 90 0 ⇒ ∠ C = 60 0
Từ B kẻ đường thẳng song song AD cắt CD tại E.
Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE
⇒ DE = 3 (cm), BE = 3 (cm)
∠ (BEC) = ∠ (ADC) (đồng vị)
Suy ra: ∠ (BEC) = ∠ C
⇒ ∆ BEC cân tại B có ∠ C = 60 0
⇒ ∆ BEC đều
⇒ EC = BC = 3 (cm)
CD = CE + ED = 3 + 3 = 6(cm)
Chu vi hình thang ABCD bằng:
AB + BC + CD + DA = 3 + 3 + 6 + 3 = 15 (cm)
cho hình thang cân ABCD có đường chéo BD vuông góc với cạnh bên BC, BD là tia phân giác góc D, BC=6cm. Tính chu vi hình thang ABCD
ABCD là hình thang cân (gt) nên AB song song với CD,AD=BC=6cm và góc C=góc ADC
DB la tia p/g của góc ADC(gt) nên góc ADB=góc BDC= 1/2 góc ADC =1/2 góc C
AB song song với CD (cmt) suy ra: góc ABD=góc BDC
Tam giác ABD có: góc ABD=góc ADB(=góc BDC)
Do đó tam giác ABD cân tại A (DHNB) suy ra: AB=AD=6cm
Tam giác DBC vuông tại B nên góc BDC+góc C=90 độ
Hay 1/2 góc C+ góc C=90 độ
3/2 góc C =90 độ
C=60 độ.Sau đó tính được góc BDC=30 độ
Tam giác BDC vuông tại B có góc BDC=30 độ vì thế BC=1/2 DC
Do đó:DC=2BC=2x6=12(cm)
Chu vi hình thang ABCD là:
AB+AD+BC+CD=6+6+6+12=30(cm)
Vậy chu vi hình thang ABCD là 30 cm
Bài 1: Cho hình thang cân ABCD có AB//CD, đường chéo DB vuông góc với cạnh bên BC, DB là tia phân giác góc D. Tính chu vi của hình thang, biết BC=3cm.
Bài 2: Cho tam giác ABC cân tại A, các đường phân giác BD,CE (D thuộc AC, E thuộc AB)
a) Chứng minh BEDC là hình thang cân
b) Tính các góc của hình thang cân BEDC, biết góc C=50 độ
Bài 3: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:
a) OA=OB , OC=OD
b) EO là đường trung trực của hai đáy hình thang ABCD.
Các bạn giải giúp mình bài này nhé. Cảm ơn các bạn.
Bài 1: Cho hình thang cân ABCD có AB//CD, đường chéo DB vuông góc với cạnh bên BC, DB là tia phân giác góc D. Tính chu vi của hình thang, biết BC=3cm.
Bài 2: Cho tam giác ABC cân tại A, các đường phân giác BD,CE (D thuộc AC, E thuộc AB)
a) Chứng minh BEDC là hình thang cân
b) Tính các góc của hình thang cân BEDC, biết góc C=50 độ
Bài 3: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:
a) OA=OB , OC=OD
b) EO là đường trung trực của hai đáy hình thang ABCD.
Các bạn giải giúp mình bài này nhé. Cảm ơn các bạn.
Bài 2:
Ta có: ∆ABC là ∆ cân tại A(gt)
=>∠ABC=∠ACB
+Ta có BD là tia pgiac của ∠ABC
=>∠B1=∠B2=1/2∠ABC
+Ta có CE là tia pgiac ∠ACB
=>C1=C2=1/2∠ACB
Xét ∆
AEC và ΔADB có:
+∠A chung
+AB=AC
+C1=B1
=> ΔAEC = ΔADB
=> AE = AD
=>BCDE là hình thang cân
b) Ta có ∠ACB=∠ABC=50o(do BCDE là hình thang cân)
Ta có: ED//BC
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABC}=\widehat{AED}\\\widehat{ACB}=\widehat{ADE}\end{matrix}\right.=50^o}\) (SLT)
Mà ∠DEB=∠EDC
Ta có:
+∠DEB+∠AED=180o (kề bù)
=>50o+∠AED=180o
=>∠AED=180o-50o=130o
=>∠AED=∠ADE=130o
Bài 1:
Ta có: AD=BC=3cm (t/c hthang)
Vì AB//CD(gt) nên \(\widehat{ABD}=\widehat{BDC}\left(SLT\right)\)
Mà \(\widehat{ADC}=\widehat{BDC}\) (do BD là tia pgiac góc D)
=>∠ABD=∠BDC
=>∆ABD cân tại A
=>AD=BC=3cm
Vì ∆DBC vuông tại B
nên ∠BDC+∠C=90o
Mà ∠ADC=∠C (do ABCD là hình thang cân)
và ∠BDC=1/2 ∠ADC
=> ∠BCD=1/2∠C
Khi đó: ∠C+1/2∠C=90o=>∠C=60o
- Kẻ từ B 1 đường thẳng // AD cắt CD tại E
Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE
⇒ DE = 3 (cm), BE = 3 (cm)
Mà ∠BEC=∠ADC(đồng vị)
=>∠BEC=∠C
=>∆BEC cân tại B có ∠C=60o
=>∆BEC là ∆ cả cân cả đều
=> EC=BC=3cm
Ta có: CD = CE + ED = 3 + 3 = 6(cm)
Chu vi hình thang ABCD bằng:
AB + BC + CD + DA = 3 + 3 + 6 + 3 = 15 (cm)
Xét \(\Delta\)ABD có: \(\widehat{ABD}\) = \(\widehat{BDC}\) ( hai góc so le trong)
\(\widehat{ADB}\) = \(\widehat{BDC}\) (BD là phân giác của góc \(\widehat{ABD}\))
⇒ \(\widehat{ABD}\) = \(\widehat{ADB}\) (vì cùng bằng góc BDC)
⇒ \(\Delta\) ABD cân tại A ⇒ AB = AD = 3 cm
Gọi E là trung điểm của DC ta có:\(\Delta\)BCD vuông tại B nên
BE = DE = EC (trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)
Mặt khác ta có: \(\widehat{ADC}\) = \(\widehat{DCB}\) ( vì ABCD là hình thang cân)
⇒\(\widehat{BDC}\) = \(\dfrac{1}{2}\) \(\widehat{DCB}\) ⇒ \(\widehat{DCB}\) + \(\dfrac{1}{2}\)\(\widehat{DCB}\) = 900
⇒ \(\widehat{DCB}\) \(\times\) ( 1 + \(\dfrac{1}{2}\)) = 900
⇒ \(\widehat{DCB}\) = 900 : \(\dfrac{3}{2}\) = 600
Xét \(\Delta\)BCE có BE = EC và \(\widehat{BCE}\) = 600 nên \(\Delta\)BCE là tam giác đều
⇒ BE = EC = BC = 3 cm
⇒ DC = BE \(\times\) 2 = 3 \(\times\) 2 = 6 cm
Chu vi của hình thang ABCD là:
3 + 3 + 6 + 3 = 15 (cm)
Kết luận chu vi hình thang là: 15 cm
Cho hình thang cân ABCD, đáy nhỏ CD = a, tổng hai góc A và B bằng một nửa tổng hai góc C và D, đường chéo AC vuông góc với cạnh bên BC.
a) Tính các góc của hình thang
b) Chứng minh AC là phân giác của góc DAB
c) Tính chu vi hình thang
Giải giúp mình nhé mình đang cần gấp! Thank
Hình thang cân ABCD có đường chéo BD vuông góc với cạnh bên BC và DB là tia phân giác của góc D . Tính chu vi của hình thang, biết BC= 4 cm
Cho hình thang cân ABCD có đường chéo BD vuông góc với cạnh bên BC. DB là tia phân giác của góc D. Biết BC = 3cm, chu vi của hình thang là …cm