may thanh giup em voi!!
(x-1)(x+1)(x+2)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\frac{x+4}{2000}\)+\(\frac{x+3}{2001}\)=\(\frac{x+2}{2002}\)+\(\frac{x+1}{2003}\)
giup mik voi may thanh yeu dau oi
giup do gium mik nhoa
tìm nghiệm của đa thức :
h(x)=x^4+3x^2-4x
(giup mik voi mik can loi giai chi tiet
cam on may thanh da giup mik)
h(x)= x^4+4x^2-x^2-4x
= (x^4-x^2) + (4x^2-4x)
= x^2(x^2-1) + 4(x^2-1)
= (x^2+4)(x^2-1)
Do đó ta có: h(x)=0 hay (x^2+4)(x^2-1)=0
Suy ra x^2-1=0 (vì x^2+4 >0)
x^2 =1
=>x=1 hay x= -1.
cao nhan naoo giup em voi
1.cmr voi a,b,c la cac so duong ta co: (a+b+c)(1/a+1/b+1/c)>hoac =9
2.giai bat phuong trinh (x+3)(x-3),(x-2)^2+3
EM XIN CHAN THANH CAM ON CAC VI CAO NHAN >_<
1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
\(\frac{x+1}{10}\)+\(\frac{x+1}{11}\)+\(\frac{x+1}{12}\)=\(\frac{x+1}{13}\)+\(\frac{x+1}{14}\)
tim x nao
giup mik voi may thanh oi
mik tick cho nhoa
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Có: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
x-1/5 = y+4/-3= z-2 va x - 5y + z = 18
Giup minh voi nha may ban
\(\frac{x-1}{5}=\frac{y+4}{-3}=\frac{z-2}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{5}=\frac{y+4}{-3}=\frac{z-2}{1}=\frac{\left(x-1\right)-5\left(y+4\right)+\left(z-2\right)}{5-5.\left(-3\right)+1}=\frac{-5}{21}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=-\frac{5}{21}.5\\y+4=\frac{-5}{21}.\left(-3\right)\\z-2=-\frac{5}{21}.1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{4}{21}\\y=\frac{-23}{7}\\z=\frac{37}{21}\end{cases}}\)
phan tich da thuc thanh nhan tu (xy+1)^2 -(x-y)^2 ai giup minh voi
\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)
\(=x^2y^2+xy-x^2y+xy^2+xy+1-x+y+x^2y+x-x^2+xy-xy^2-y+xy-y^2\)
\(=x^2y^2+2xy-x^2-y^2+1\)
a, 8xy2-2x2y
b, x(x-y)-y(y-x)
c, x(x-1)+(1-x)2 nhờ giir giup em voi a
`a, 8xy^2-2x^2y`
`= 2xy ( 4y - x)`
`b, x(x-y) -y(y-x)`
`= x(x-y) + y(x-y)`
`= (x-y)(x+y)`
`c, x(x-1) + (1-x)^2`
`= x(x-1)+(x-1)^2`
`= (x-1) (x+x-1)`
`=(x-1)(2x-1)`
Phan tich da thuc thanh nhan tu
A^5+a^3-a^2-1
27a^2b^2-18ab+3
4-x^2-2xy-y^2
Giup em voi lop8
a) \(a^5+a^3-a^2-1\)
\(=a^5+a^4+a^3+a^3+a^2+a-a^4-a^3-a^2-a^2-a-1\)
\(=a^3\left(a^2+a+1\right)+a\left(a^2+a+1\right)-a^2\left(a^2+a+1\right)-\left(a^2+a+1\right)\)
\(=\left(a^3+a-a^2-1\right)\left(a^2+a+1\right)\)
\(=\left[\left(a^3-1\right)-a\left(a-1\right)\right]\left(a^2+a+1\right)\)
\(=\left[\left(a-1\right)\left(a^2+a+1\right)-a\left(a-1\right)\right]\left(a^2+a+1\right)\)
\(=\left(a-1\right)\left(a^2+a+1-a\right)\left(a^2+a+1\right)\)
\(=\left(a-1\right)\left(a^2+1\right)\left(a^2+a+1\right)\)
b) \(27a^2b^2-18ab+3\)
\(=3\left(9a^2b^2-6ab+1\right)\)
\(=3\left(3ab-1\right)^2\)
c) \(4-x^2-2xy-y^2\)
\(=4-\left(x+y\right)^2\)
\(=\left(2-x-y\right)\left(2+x+y\right)\)
Giai giup em bai nay voi a. : x(x+1)=y2+1