giải bất phương trình
\(\frac{3x-5}{4x+1}-\frac{x-2}{3x-5}=0\)
Bài 1: Giải phương trình và bất phương trình sau: 1. 5.(2-3x). (x-2) = 3.( 1-3x) 2. 4x^2 + 4x + 1= 0 3. 4x^2 - 9= 0 4. 5x^2 - 10=0 5. x^2 - 3x= -2 6. |x-5| - 3= 0
Giải bất phương trình:
\(\frac{4x-5}{3}-\frac{x+2x^2}{2}>\frac{x\left(1-3x\right)}{3}-4\)
Giải bất phương trình
\(\frac{3x}{5}+\frac{x-1}{4}=5-\frac{3x-1}{2}\)
\(\frac{3x}{5}+\frac{x-1}{4}=5-\frac{3x-1}{2}\)
\(\Leftrightarrow\frac{3x.4+5\left(x-1\right)}{20}=\frac{20.5-10\left(3x-1\right)}{20}\)
\(\Rightarrow12x+5x-5=100-30x+10\)
\(\Leftrightarrow47x=115\)
\(\Leftrightarrow x=\frac{115}{47}\)
giải phương trình
a, 1-\(\frac{2x+3}{7}=0\)
b, \(\frac{3x-5}{4x+1}-\frac{x-2}{3x-5}=0\)
c ,
a) \(1-\frac{2x+3}{7}=0\)
=> \(\frac{7-2x-3}{7}=0\)
=> \(\frac{4-2x}{7}=0\)
=> 4 - 2x = 0
=> 2x = 4
=> x = 4 : 2 = 2
a) \(1-\frac{2x+3}{7}=0\)
\(\Leftrightarrow\frac{7}{7}-\frac{2x-3}{7}=0\)
\(\Leftrightarrow\frac{7-2x+3}{7}=0\)
\(\Leftrightarrow7-2x+3=0\)
\(\Leftrightarrow-2x+10=0\)
\(\Leftrightarrow-2\left(x-10\right)=0\)
\(\Leftrightarrow x-10=0\)
\(\Leftrightarrow x=10\)
a ) \(1-\frac{2x+3}{7}=0\)
\(\Leftrightarrow\frac{7}{7}-\frac{2x+3}{7}=0\)
\(\Leftrightarrow7-2x+3=0\)
\(\Leftrightarrow2x+3=7\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Bài 1. Giải các phương trình sau :
a) 7x - 35 = 0 b) 4x - x - 18 = 0
c) x - 6 = 8 - x d) 48 - 5x = 39 - 2x
Bài 2. Giải các phương trình sau :
a) 5x - 8 = 4x - 5 b) 4 - (x - 5) = 5(x - 3x)
c) 32 - 4(0,5y - 5) = 3y + 2 d) 2,5(y - 1) = 2,5y
Bài 3. Giải các phương trình sau :
a) \(\frac{3x-7}{5}=\frac{2x-1}{3}\)
b) \(\frac{4x-7}{12}- x=\frac{3x}{8}\)
Bài 4. Giải các phương trình sau :
a) \(\frac{5x-8}{3}=\frac{1-3x}{2}\)
b) \(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
Bài 5. Giải các phương trình sau :
a) 6(x - 7) = 5(x + 2) + x b) 5x - 8 = 2(x - 4) + 3
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
có bị viết nhầm thì thông cảm nha!
la`thu'hai nga`y 19 nhe
Giải các phương trình và bất phương trình sau:
\(a,\frac{2-x}{2011}-1=\frac{1-x}{2012}-\frac{x}{2013}\)
\(b,4x^2-4x-5\left|2x-1\right|-5=0\)
\(c,\left(3x^2+3x+4\right)^2-\left(x^2+x+4\right)^2>0\)
bài 1. giải các phương trình sau
a / \(x =(4x+1) (\frac{3x+7}{3-5x}+1)=(x+4)(\frac{3x+7}{5x-3}-1)\)
b/ \(\left(x^2+3x+1\right)\left(\frac{4x-3}{3x+1}+2\right)=\left(4x+7\right)\left(\frac{4x-3}{3x+1}+2\right)\)1)
bài 2. giải phương trình sau bằng cách đưa về phương trình tích
a/\(\left(4x-5\right)^2-2\left(16x^2-25\right)=0\)
b/ \(\left(4x+3\right)^2=4\left(x^2-2x+1\right)\)
c. \(3x^3-3x^2-6x=0\)
cảm ơn mọi người nhiều lắm !
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
giải bất phương trình và phương trình;
A. 3x+2(x+1)=6x-7
B.\(\frac{x+3}{5}< \frac{5-x}{3}\)
C. \(\frac{5}{x+1}+\frac{2x}{x^2-3x-4}=\frac{2}{x-4}\)
A . 3x + 2(x + 1) = 6x - 7
<=> 3x + 2x + 2 = 6x -7
<=> 5x - 6x = -7 - 2
<=> -x = -9
<=> x =9
B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)
=> 3(x +3) < 5(5 -x)
<=> 3x+9 < 25 - 5x
<=> 3x + 5x < 25 - 9
<=> 8x < 16
<=> x < 2
C . \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2+x-4x-4_{ }}\)= \(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)= \(\frac{2}{x-4}\)
<=> 5(x - 4) + 2x = 2(x +1)
<=> 5x - 20 + 2x = 2x + 2
<=>7x - 2x = 2 + 20
<=> 5x = 22
<=> x =\(\frac{22}{5}\)