Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hương Giang
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
22 tháng 6 2021 lúc 22:17

đk: x khác 0

A = \(\sqrt{\dfrac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)

\(\sqrt{\dfrac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)

\(\sqrt{\dfrac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)

\(\dfrac{x^2+3}{\left|x\right|}+\left|x-2\right|\)

TH1: x \(\ge2\)

A = \(\dfrac{x^2+3}{x}+x-2\)

\(\dfrac{x^2+3+x^2-2x}{x}=\dfrac{2x^2-2x+3}{x}\)

TH2: \(0< x< 2\)

A = \(\dfrac{x^2+3}{x}-x+2\)

\(\dfrac{x^2+3-x^2+2x}{x}=\dfrac{2x+3}{x}\)

TH3: x < 0

A = \(\dfrac{x^2+3}{-x}-x+2\)

\(\dfrac{-x^2-3}{x}-x+2=\dfrac{-x^2-3-x^2+2x}{x}=\dfrac{-2x^2+2x-3}{x}\)

Phạm Nguyễn Hạnh Vy
Xem chi tiết
chi chăm chỉ
Xem chi tiết
Hoàng Lê Bảo Ngọc
21 tháng 7 2016 lúc 8:58

a) A = \(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)

\(=\frac{x^2+3}{\left|x\right|}+\left|x-2\right|=\left|x\right|+\frac{3}{\left|x\right|}+ \left|x-2\right|\)

b) A nhận gt nguyên khi |x| thuộc Ư(3) (các ước dương)

=> |x| thuộc {1;3} => x thuộc {-3;-1;1;3}

oOo FC Beerus sama oOo
20 tháng 7 2016 lúc 15:50

Mik không biết nhưng bạn click mik nhé .
 

Đặng Công Minh Nghĩa
Xem chi tiết
Ác Mộng
Xem chi tiết
Trần Thị Loan
8 tháng 7 2015 lúc 10:27

 

Điều kiện: x khác 0

\(=\sqrt{\frac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)

\(=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)

\(=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|=\frac{x^2+3}{\left|x\right|}+\left|x-2\right|\)

Minh Triều
8 tháng 7 2015 lúc 10:31

\(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)

=\(\frac{\sqrt{x^4-6x+9+12x^2}}{\sqrt{x^2}}+\sqrt{x^2+4x+4-8x}\)

=\(\frac{\sqrt{x^4+6x+9}}{x}+\sqrt{x^2-4x+4}\)

=\(\frac{\sqrt{\left(x^2+3\right)^2}}{x}+\sqrt{\left(x-2\right)^2}\)

=\(\frac{\sqrt{\left(x^2+3\right)^2}}{x}+\left|x-2\right|\)

=\(\frac{x^2+3}{x}+\left|x-2\right|\)

TH1: x\(\ge\)2 =>|x-2|=x-2

=>\(\frac{x^2+3}{x}+\left|x-2\right|\)

=\(\frac{x^2+3}{x}+x-2\)

=\(\frac{x^2+3}{x}+\frac{x^2-2x}{x}=\frac{2x^2-2x+3}{x}\)

TH2:x\(\le\)2 =>|x-2|=2-x

=>\(\frac{x^2+3}{x}+\left|x-2\right|\)

=\(\frac{x^2+3}{x}+2-x\)

=\(\frac{x^2+3}{x}+\frac{2x-x^2}{x}=\frac{2x+3}{x}\)

Minh Thảo
Xem chi tiết
Mickey Nhi
Xem chi tiết
Mickey Nhi
18 tháng 9 2016 lúc 21:45

Các bạn giúp mình giải bài này nha

Lê Phương Thảo
18 tháng 6 2017 lúc 8:35

tìm GTLN,GTNN của biểu thức

\(\sqrt{x+3}\)+\(\sqrt{5-x}\)

Nguyễn Điệp Hương
18 tháng 6 2017 lúc 8:56

a)

B = \(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}+\sqrt{\left(x+2\right)^2-8x}}\)

B = \(\sqrt{\frac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)

B = \(\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{x^2-4x+4}\)

B = \(\frac{x^2+3}{x}+\sqrt{\left(x-2\right)^2}\)

B = \(\frac{x^2+3}{x}+\left(x-2\right)\)

B = \(\frac{x^2+3+x\left(x-2\right)}{x}\)

B = \(\frac{x^2+3+x^2-2x}{x}\)

B = \(\frac{2x^2-2x+3}{x}\)

B = \(2\left(x-1\right)+3\)

b) để B nguyên thì B  \(\ge\)0

<=> 2 ( x - 1 ) + 3  \(\ge\)0

<=> 2x - 2 + 3  \(\ge\)0

<=> 2x + 1  \(\ge\)0

<=>   x  \(\ge\)\(\frac{-1}{2}\)

k mình nhé bạn

Mickey Nhi
Xem chi tiết
Nguyễn Quỳnh Anhh
Xem chi tiết
Trần Ái Linh
20 tháng 7 2021 lúc 21:51

`(\sqrt(3x^2-12x+12)-x+2)/(x-2)`

`=(\sqrt(3(x^2-4x+4))-(x-2))/(x-2)`

`=(\sqrt(3(x-2)^2)) -(x-2))/(x-2)`

`=(\sqrt3. (x-2) - (x-2))/(x-2)`

`=( (\sqrt3-1) (x-2))/(x-2)`

`=\sqrt3-1`

`=>` C.