A = { \sqrt{x}\over\sqrt{x+2} } + { \sqrt{x}\over\sqrt{x-2} } -{ 2x+8\over\x-4 }
a) Rút gọn A
b)Tìm x thuộc Z để A là số nguyên âm
Helpp meee Helpp meee
\(A=({\sqrt{x}+2 \over x+2\sqrt{x}+1}-{\sqrt{x}-2\over x-1}):{\sqrt{x}\over\sqrt{x}+1}\)
a_ rút gọn
b_ tìm các giá trị của x để A nguyên
Cho \(P =( { \sqrt{x} +2 \over \sqrt{x} -2} -{ \sqrt{x} -2 \over \sqrt{x} +2} -{{4x} \over {4-x}}) : { x- 3\sqrt{x} \over 10\sqrt{x} -5x}\)
a) Tìm x để P có nghĩa
b) Rút gọn P
c) Tìm các giá trị của x để P > 0
d) Tìm các giá trị nguyên của a để P ⋮ 20
p/s: em đang cần giải gấp câu d mọi người giúp em trình bày với ạ
\(b26 = [{\sqrt{x-1} \over 3\sqrt{x}-1}-{\sqrt{1} \over 3\sqrt{x}+1}{8\sqrt{x} \over 9x-1}]:[1-{3\sqrt{x}-2 \over 3\sqrt{x+1}}]\)
a) rút gọn
Cho biểu thức A = \(\dfrac{2}{\sqrt{x}-3}\) + \(\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
a, Rút gọn biểu thức A
b, Tìm x thuộc Z để biểu thức A nhận giá trị nguyên
\(a,A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\left(x\ge0;x\ne1;x\ne9\right)\\ A=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
\(b,A\in Z\Leftrightarrow\dfrac{\sqrt{x}-3+5}{\sqrt{x}-3}\in Z\Leftrightarrow1+\dfrac{5}{\sqrt{x}-3}\in Z\\ \Leftrightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ Mà.x\ge0\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;8\right\}\\ \Leftrightarrow x\in\left\{4;16;64\right\}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\\x\ne1\end{matrix}\right.\)
\(A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
b) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=1+\dfrac{5}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Kết hợp đk
\(\Rightarrow x\in\left\{4;16;64\right\}\)
\(x = {2 \sqrt{a} \ +\ 3\sqrt{b} \over\sqrt{ab}\ +\ 2\sqrt{a}\ -\ 3\sqrt{b}\ -6 }\)\( -{6 \sqrt{ab} \over \sqrt{ab} +\ 2\sqrt{a}+\ 3\sqrt{b}+6}\)
Rút gọn
Rút gọn j ạ ??
Đề đâu r
Trả lời :
Bạn ơi :) Đề đâu ạ ?
Bạn đứa đề bổ sung nhé :) Chứ rút gọn kiểu này thì chịu ạ :0
\(P= { \sqrt{x} \over √x + 3}\)+\({{3x+9} \over 9- x}\)+\({2 \sqrt{x} \over √x -3}\)
\(Q= {{3} \over √x -1}\)
a, Rút gọn P
b, Tính giá trị của biểu thức Q khi x= 4 +2√3
c, Tìm giá trị nguyên của x để Q:P nhận giá trị nguyên dương
( giải giúp mk nhé!)
Rút gọn các biểu thức sau:
a, \(5\sqrt{x}-{(x+10\sqrt{x}+25)(\sqrt{x}-5)\over x-25}\) với 0 ≤ x ≠ 25
b, \({\sqrt{x^2-4x+4}\over x-2}\) với x ≠ 2
/x-25 và /x-2 đấy ạ,máy em bị đánh lỗi. :((
\(5\sqrt{x}-\frac{\left(x+10\sqrt{x}+25\right)\left(\sqrt{x}-5\right)}{x-25}=5\sqrt{x}-\frac{\left(\sqrt{x}+5\right)^2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=5\sqrt{x}-\left(\sqrt{x}+5\right)=4\sqrt{x}-5\)
\(\frac{\sqrt{x^2-4x+4}}{x-2}=\frac{\sqrt{\left(x-2\right)^2}}{x-2}=\frac{\left|x-2\right|}{x-2}=\orbr{\begin{cases}\frac{x-2}{x-2}\left(x>2\right)\\\frac{2-x}{x-2}\left(x< 2\right)\end{cases}=\orbr{\begin{cases}1\left(x>2\right)\\-1\left(x< 2\right)\end{cases}}}\)
Cho các số dương a, b và \(x = {2ab \over b^2 + 1}\)
Xét biểu thức \(P = { \sqrt{a + x} + \sqrt{a - x} \over \sqrt { a + x } + \sqrt { a - x }} + 1 /3b\)
1. Chứng minh P xác định. Rút gọn P
2. Khi a và b thay đổi, hãy tìm MIN P
Cho hai bt A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)và B=\(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\)
a) rút gọn B
b)tìm x thuộc Z để C= A(B-2) có giá trị nguyên
a) \(B=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\left(đk:x\ge0,x\ne4\right)\)
\(=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}.\dfrac{x-4}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}\)
c) \(C=A\left(B-2\right)=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\left(\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}-2\right)\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}.\dfrac{-2}{\sqrt{x}+2}=\dfrac{-2}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{1;-1;2-2\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0\right\}\)
\(\Rightarrow x\in\left\{0;1;9;16\right\}\)