Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Thu Trang
Xem chi tiết
ĐàoMạnh
Xem chi tiết
ĐàoMạnh
Xem chi tiết
Đào Thị Thảo Nhi
Xem chi tiết

\(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)

\(8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)

\(\text{Vì }\frac{7}{8^{19}+1}>\frac{7}{8^{24}+1}\)

\(\Rightarrow8A>8B\)

\(\Rightarrow A>B\)

\(\text{Câu B làm tương tự nhé}\)

Khách vãng lai đã xóa
Hàn Bạch
Xem chi tiết
Trung Kien Du Tran
11 tháng 10 2017 lúc 20:22

ta có A= \(\frac{8^{18}+1}{8^{19} +1}\)=> 8A=\(\frac{8^{19}+8}{8^{19}+1}\)\(\frac{\left(8^{19}+1\right)+7}{8^{19}+1}\)=\(\frac{8^{19}+1}{8^{19} +1}\)+\(\frac{7}{8^{19}+1}\) =1+\(\frac{7}{8^{19}+1}\) =\(\frac{7}{8^{19}+1}\) 

         B= \(\frac{8^{23}+1}{8^{24}+1}\)=> 8B=\(\frac{8^{24}+8}{8^{24}+1}\)\(\frac{\left(8^{24}+1\right)+7}{8^{24}+1}\)=\(\frac{8^{24}+1}{8^{24}+1}\)+\(\frac{7}{8^{24}+1}\) =1+\(\frac{7}{8^{24} +1}\)=\(\frac{7}{8^{24}+1}\)

       vì  \(8^{19}\)<\(8^{24}\)=> \(8^{19}\)+1 >\(8^{24}\)+1 => \(\frac{7}{8^{19}+1}\)<\(\frac{7}{8^{24}+1}\)=> A<B

Nguyễn Lê Thành Vinh Thi...
11 tháng 10 2017 lúc 20:09

a) ta có \(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\\ 8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)

Vì \(8^{24}+1>8^{19}+1\\\frac{7}{8^{24}+1}< \frac{7}{8^{19}+1} \)

vậy 8A>8B nên A>B

Trung Kien Du Tran
13 tháng 10 2017 lúc 20:04

nhầm dấu

\(8^{19}\) +1<\(8^{24}\)+1=> \(\frac{7}{8^{19}+1}\)<\(\frac{7}{8^{24}+1}\)=> A<B

Lê Huy      Hòa
Xem chi tiết
Nguyễn Đình Trung
Xem chi tiết
Linh Đan
Xem chi tiết
Lê Hoài Anh
4 tháng 12 2017 lúc 20:55

24/10<25/10

Tsukino Usagi
Xem chi tiết
Duc Loi
27 tháng 5 2018 lúc 9:50

a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)

\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)

Từ (1) và (2) \(\Rightarrow A< B\)

Vậy \(A< B.\)

b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)

\(A=\left(0,1\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)

\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

d) \(A=102^7=102^6.102\)(1)

\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)

\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)

Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)

Vậy \(A>B.\)

f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)

\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

Bống và Tôm Nguyễn
27 tháng 5 2018 lúc 9:21

a, ta có A=2^24=64^4

             B=3^16=81^4

Vì 64^4<81^4

Vậy 2^24<3^36

b, ta có A=0,1^15

             B=0,3^30=0,09^15

Vì 0,1^15< 0,09^15

Vậy 0,1^15<0,3^30