Giải hệ phương trình
x2 (2013y - 2012) =1
x(y2 + 2012) = 2013
Giải hệ phương trình:
\(\begin{cases}x^2\left(2013y-2012\right)=1\\x\left(y^2+2012\right)=2013\end{cases}\)
\(\hept{\begin{cases}x^2\left(2013y-2012\right)=1\\x\left(y^2+2012\right)=2013\end{cases}}\)
\(DK:\hept{\begin{cases}x>0&y>\frac{2012}{2013}&\end{cases}}\)
HPT
\(\text{ }\Leftrightarrow\hept{\begin{cases}2013\sqrt{2013y-2012}=\frac{2013}{x}\left(1\right)\\y^2+2012=\frac{2013}{x}\left(2\right)\end{cases}}\)
\(\left(1\right),\left(2\right)\Rightarrow y^2-2013\sqrt{2013y-2012}+2012=0\)
\(\Leftrightarrow\left(y^2-1\right)-2013\left(\sqrt{2013y-2012}-1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(y-1\right)-\frac{2013^2\left(y-1\right)}{\sqrt{2013y-2012}+1}=0\)
\(\Leftrightarrow\left(y-1\right)\left(y+1-\frac{2013^2}{\sqrt{2013y-2012}+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y+1-\frac{2013^2}{\sqrt{2013y-2012}+1}=0\end{cases}}\)
Cai PT thu to ay vo nghiem nhung biet chung minh :)
\(\Rightarrow x=1\)
Vay nghiem cua HPT la \(\left(x;y\right)=\left(1;1\right)\)
Giải phương trình:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{3}{4}\)
Điều kiện: \(x\ge2012;y\ge2013;z\ge2014\)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\left\{{}\begin{matrix}\dfrac{\sqrt{x-2012}-1}{x-2012}=\dfrac{\sqrt{4\left(x-2012\right)}-2}{2\left(x-2012\right)}\le\dfrac{\dfrac{4+x-2012}{2}-2}{2\left(x-2012\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{y-2013}-1}{y-2013}=\dfrac{\sqrt{4\left(y-2013\right)}-2}{2\left(y-2013\right)}\le\dfrac{\dfrac{4+y-2013}{2}-2}{2\left(y-2013\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{\sqrt{4\left(z-2014\right)}-2}{2\left(z-2014\right)}\le\dfrac{\dfrac{4+z-2014}{2}-2}{2\left(z-2014\right)}=\dfrac{1}{4}\end{matrix}\right.\)
Cộng vế theo vế, ta được:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=2016;y=2017;z=2018\)
Vậy....
1.CM đẳng thức: \(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}+\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
2. Giai hệ phương trình:
\(\left\{{}\begin{matrix}x^2\left(2013y-2012\right)=1\\x\left(y^2+2012\right)=2013\end{matrix}\right.\)
a,Giải phương trình:
(2x2+x-2013)2+4(x2-5x-2012)2=(2x2+x-2013)(x2-5x-2012)
b,Tìm x,y € Z : x3+2x2+3x+2=y3
Giúp nha mn.Thanks nhiều!
Giải phương trình
X -3/2012+X-2/2013=X-2013/2+X-2012/3
Giải ra dùm mình luôn nha
Bạn tham khảo nhé :
Ta có :
\(\frac{x-3}{2012}+\frac{x-2}{2013}=\frac{x-2013}{2}+\frac{x-2012}{3}\)
\(\Leftrightarrow\)\(\left(\frac{x-3}{2012}-1\right)+\left(\frac{x-2}{2013}-1\right)=\left(\frac{x-2013}{2}-1\right)+\left(\frac{x-2012}{3}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-2015}{2012}+\frac{x-2015}{2013}=\frac{x-2015}{2}+\frac{x-2015}{3}\)
\(\Leftrightarrow\)\(\frac{x-2015}{2012}+\frac{x-2015}{2013}-\frac{x-2015}{2}-\frac{x-2015}{3}=0\)
\(\Leftrightarrow\)\(\left(x-2015\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2}-\frac{1}{3}\right)=0\)
Mà \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2}-\frac{1}{3}\ne0\)
\(\Rightarrow\)\(x-2015=0\)
\(\Rightarrow\)\(x=2015\)
Vậy \(x=2015\)
Chsuc bạn học tốt ~
chuyển vế t cs
x+x-x-x=....
0x=.....
Suy ra vô nghiệm
(=) [(x-3/2012)-1]+[(x-2/2013)-1]= [(x-2013/2)-1]+[(x-2012/3)-1]
(=) x-2015/2012 . +. x-2015/2013. = x-2015/2. +. x-2015/3
(=)( x-2015 ) × (1/2012 + . 1/2013. -. 1/2 . - 1/3 .) =0
Mà 1/2012+1/2013-1/2-1/3≠0
=) x-2015 =0
(=) x=2015
\(\frac{x-1}{2013}\)+\(\frac{x-2}{2012}\)+\(\frac{x+3}{2013}\)+...+\(\frac{x-2012}{2}\)= 2012 ;
giải phương trình
Cho x, y, z thỏa mãn : \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}\) . Chứng minh rằng \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\)
Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\)
\(\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)
+) Ta có : \(\frac{2012z-2013y}{2011}=\frac{2012.2013k-2013.2012k}{2011}=0\)
\(\frac{2013x-2011z}{2012}=\frac{2013.2011k-2011.2013k}{2012}=0\)
\(\frac{2011y-2012x}{2013}=\frac{2011.2012k-2012.2011k}{2013}=0\)
Do đó : \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\left(=0\right)\) ( đpcm )
Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)
\(\frac{2012z-2013y}{2011}=\frac{2012\cdot2013k-2013k\cdot2012}{2011}=\frac{0}{2011}=0\)(1)
\(\frac{2013x-2011z}{2012}=\frac{2013\cdot2011k-2011\cdot2013k}{2012}=\frac{0}{2012}=0\)(2)
\(\frac{2011y-2012x}{2013}=\frac{2011\cdot2012k-2012\cdot2011k}{2013}=\frac{0}{2013}=0\)(3)
Từ (1) , (2) và (3) => đpcm
Giải phương trình : (2x2+x-2013)2+4 (x2-5x-2012)2= 4 (2x2+x-2013)(x2-5x-2012)
(2x2+x-2013)2+4 (x2-5x-2012)2= 4 (2x2+x-2013)(x2-5x-2012)
Dat \(\hept{\begin{cases}a=2x^2+x-2013\\b=x^2-5x-2012\end{cases}}\)ta co phuong trinh
(2x2+x-2013)2+4 (x2-5x-2012)2= 4 (2x2+x-2013)(x2-5x-2012)
<=>\(a^2+4b^2=4ab\)
<=>\(a^2+4b^2-4ab=0\)
<=>\(\left(a-2b\right)^2=0\)
<=>\(a=2b\)
=>\(2x^2+x-2013=2x^2-10x-4024\)
<=>\(11x=2011\)
<=>x=\(\frac{2011}{11}\)