Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Arceus Official
Xem chi tiết
quyminh nguyen
Xem chi tiết
Trần Đức Thắng
30 tháng 8 2015 lúc 18:20

\(\frac{1}{\text{ }\sqrt{\frac{3}{5}}+\sqrt{\frac{3}{7}}+1}=\frac{1}{\frac{\sqrt{3.7}+\sqrt{3.5}+\sqrt{5.7}}{\sqrt{5.7}}}=\frac{\sqrt{35}}{\sqrt{21}+\sqrt{35}+\sqrt{15}}\)

Tương tự :

 \(\frac{1}{\sqrt{\frac{5}{3}}+\sqrt{\frac{5}{7}}+1}=\frac{\sqrt{21}}{\sqrt{35}+\sqrt{15}+\sqrt{21}}\)

 

\(\frac{1}{\sqrt{\frac{7}{3}}+\sqrt{\frac{7}{5}}+1}=\frac{\sqrt{15}}{\sqrt{21}+\sqrt{35}+\sqrt{15}}\)

Bây giờ chỉ việc cộng lại chung mẫu

Kq ; 1 

Trung Hoang
Xem chi tiết
Phùng Minh Quân
30 tháng 10 2018 lúc 6:21

\(B=\frac{1}{\sqrt{5}+\sqrt{7}}-\frac{1}{\sqrt{5}-\sqrt{7}}=\frac{\sqrt{5}-\sqrt{7}-\sqrt{5}-\sqrt{7}}{5-7}=\frac{-2\sqrt{7}}{-2}=\sqrt{7}\)

\(C=\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}+\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}=\sqrt{\left(\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}+\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}\right)^2}\)

\(C=\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}+2\sqrt{\frac{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}}+\frac{4-\sqrt{7}}{4+\sqrt{7}}}\)

\(C=\sqrt{\frac{\left(4+\sqrt{7}\right)^2}{16-7}+\frac{\left(4-\sqrt{7}\right)^2}{16-7}+2}\)

\(C=\sqrt{\frac{\left(4+\sqrt{7}+4-\sqrt{7}\right)^2-2\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}{16-7}+2}\)

\(C=\sqrt{\frac{16^2-2\left(16-7\right)}{9}+2}=\sqrt{\frac{238}{9}+2}=\sqrt{\frac{256}{9}}=\frac{16}{3}\)

Chúc bạn học tốt ~ 

Trung Hoang
30 tháng 10 2018 lúc 12:26

thanks ban 

Phùng Minh Quân
30 tháng 10 2018 lúc 17:32

đoạn cuối sửa lại nhé -,- tính ngu 

\(C=\sqrt{\frac{8^2-2\left(16-7\right)}{9}+2}=\sqrt{\frac{46}{9}+2}=\sqrt{\frac{64}{9}}=\frac{8}{3}\)

Chúc bạn học tốt ~ 

hoangkunvai
Xem chi tiết
Thanh Tùng DZ
7 tháng 6 2019 lúc 16:28

với n >0, ta có :

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)

Gọi biểu thức đã cho là A

\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)

\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)

\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)

\(A=-\sqrt{1}+\sqrt{9}=2\)

shitbo
7 tháng 6 2019 lúc 16:39

\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n}+\sqrt{n+1}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=-\sqrt{n}-\sqrt{n+1}\)

Lê Thảo Linh
Xem chi tiết
Nguyễn Minh Triết
30 tháng 8 2016 lúc 22:39

Phân tích mỗi hạng tử theo kiểu như dưới đây

\(\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}\right)^2-\left(\sqrt{2}\right)^2}\)

\(\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2}\)

Khi đó mọi mẫu đều bằng -1

Bạn tiếp tục làm và kết quả nhận được là \(1-\sqrt{9}\)

Âu Dương Thiên Vy
Xem chi tiết
Nguyễn Huy Hoàng
6 tháng 3 2021 lúc 13:16
Xét biểu thức phụ : 1 (2n+3)√2n+1+(2n+1)√2n+3 = 1 √2n+1.√2n+3(√2n+1+√2n+3) = √2n+3−√2n+1 √2n+1.√2n+3[(2n+3)−(2n+1)] = √2n+3−√2n+1 2√2n+1.√2n+3 = 1 2 ( 1 √2n+1 − 1 √2n+3 )với n≥1 Áp dụng : S= 1 3√1+1√3 + 1 3√5+5√3 + 1 5√7+7√5 +...+ 1 101√103+103√101 = 1 2 ( 1 √1 − 1 √3 )+ 1 2 ( 1 √3 − 1 √5 )+ 1 2 ( 1 √5 − 1 √7 )+...+ 1 2 ( 1 √101 − 1 √103 ) = 1 2 (1− 1 √3 + 1 √3 − 1 √5 + 1 √5 − 1 √7 +...+ 1 √101 − 1 √103 ) = 1 2 (1− 1 √103 )
Khách vãng lai đã xóa
chu tien dat
Xem chi tiết
JohnVN Mr
Xem chi tiết
Duyên Nguyễn
Xem chi tiết
Bảo Ngọc KNs
3 tháng 7 2016 lúc 21:37

=\(\frac{1}{\sqrt{7-2\sqrt{6}_{ }}+1}+\frac{1}{\sqrt{7+2\sqrt{6}}+1}\)

=\(\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2+1}}+\frac{1}{\sqrt{\left(\sqrt{6+1}\right)^2}+1}\)

=\(\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}+2}\)

=\(\frac{\sqrt{6}+2+\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)

=\(\frac{2\sqrt{6}+2}{6+2\sqrt{6}}\)