Tính giá trị biểu thức sau bằng cách hợp lí:
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
TÍNH GIÁ TRỊ CỦA BIỂU THỨC SAU BẰNG CÁCH HỢP LÍ
A = x5 - 100x4 + 100x3 -100x2 + 100x -9 tại x= 99
LÀM ƠN GIÚP MIK ĐANG CẦN GẤP
Ta có x = 99
=> x + 1 = 100
Khi đó A = x5 - 100x4 + 100x3 - 100x2 + 100x - 9
= x5 - (x + 1)x4 + (x + 1)x3 - (x + 1)x2 + (x + 1)x - 9
= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 9
= x - 9
Thay x = 99 vào A
=> A = x - 9 = 99 - 9 = 90
Vậy A = 90
Ta có : \(x=99\Rightarrow100=x+1\)
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-9\)
\(=x-9\)hay \(99-9=90\)
Vậy \(A=90\)
1. tính giá trị của biểu thức sau một cách hợp lí
\(\text{a)}A=x^5-100x^4+100x^3-100x^2+100x-9\)tại x=99
b)\(B=x^6-20x^5-20x^4-20x^3-20x^2-20x+3\)tại x=21
a) Vì\(x=99\Rightarrow x+1=100\)
Thay x+1=100 vào biểu thức A ta được :
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+9\)
\(=x+9\)
\(=99+9\)
\(=108\)
b) Tương tự
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)+x\left(x-99\right)-9\)
\(\Rightarrow A=x^4\left(99-99\right)-x^3\left(99-99\right)+x^2\left(99-99\right)+x\left(99-99\right)-9\)
\(\Rightarrow A=x^4.0-x^3.0+x^2.0+x.0-9\)
\(\Rightarrow A=0-0+0+01-9=-9\)
Theo cách của Lê Tài Bảo Châu thì, câu b)
\(x=21\Rightarrow x-1=20\)
\(\Rightarrow B=x^6-20x^5-20x^4-20x^3-20x^2-20x+3\)
\(=x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+3\)
\(=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+3\)
= x + 3 = 21 + 3 = 24
Tính giá trị biểu thức:
A= x^5-100x^4+100x^3-100x^2+100x-9, tại x=99
x = 99 suy ra 100 = x +1
A= x^5 - (x + 1)x^4 + (x + 1)x^3 - (x+1)x^2 + (x +1)x - 9
A= x^5 - x^5 - x^4 + x^4 +x^3 - x^3 -x^2 +x^2 + x - 9
A= x - 9 = 99 - 9 = 90
x=99 suy ra 100 = x+1
A= x^(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-9
A=x^5(x^5-x^4+x^4+x^3-x^2_x^2_9
A=x-9=99-9=90
A-90
ta có A= x5-x4-99x4+99x3+x3-x2-99x2+99x+x-9
A=x4.(x-1)-99x3.(x-1)+x2.(x-1)-99x.(x-1)+x-9
A= (x-1)(x4-99x3+x2-99x)+x-9
A= (x-1)(x-99)(x3+x)+x-9
Thay x=99 vào A ta được: cái này tự thay nhé
ta thấy 99-99=0
<=> A=99-9=90
bạn like giúp mình với nhé, mình cảm ơn ạ
Tính giá trị biểu thức theo cách hợp lí:
a) A= x^5 -100x^4 +100x^3 -100x^2 +100x -9 tại x=99
b)B= x^6 -20x^5 -20x^4 -20x^3 -20x^2 -20x +3 tại x=21
c) C= x^7 - 26x^6 +27x^5 -47x^4 -77x^3 +50x^2 +x - 24 tại x=25
Mình đang cần kết quả gấp nên các bạn hãy giúp mình nhé!
Tính giá trị của biểu thức A=x^5-100x^4+100x^3-100x^2+100x-9 tại x=99
Tính giá trị biểu thức:
x5 - 100x4 + 100x3 - 100x2 + 100x - 9 tại x=99
Tính giá trị biểu thức sau:
x5 - 100x4 + 100x3 - 100x2 + 100x - 9 tại x=99
Giúp mik vs, giải chi tiết tí nhé
x =99 => 100 = x + 1 thay vào ta có
\(x^5-\left(x+1\right)x^4+\left(x+1\right).x^3-\left(x+1\right).x^2+\left(x+1\right)x-9=x^5-x^5-x^4+...+x^2+x-9\)
= x - 9
= 99 -9
= 90
P=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xy" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
S=xy=x(201−x)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
1≤x≤200" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
S=200−(x−1)(x−200)≥0⇒Smin=200" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
x≤y⇒x≤100" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
S=100.101−(x−100)(x−101)≤100.101⇒Smax=100.101" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
Bài 1: CM đẳng thức sau:
(x^2-xy+y^2)(x+y)=x^3+y^3.
Bài 2: Chứng tỏ rằng các đa thức sau không phụ thuộc vào biến :
(x^2+2x+3)(3x^2-2x+1)-3x^2(x^2+1)-4x(x-1).
Bài 3: Tìm x biết :
(3x-1)(2x+7)-(x+1)(6x-5)=16.
Bài 4: CM rằng với mọi n thuộc Z thì:
n(n+5)-(n-3)(n+2) chia hết cho 6.
Bài 5: CM rằng với mọi số nguyên a giá trị của biểu thức:
a(a-1)-(a+3)(a+2) chia hết cho 6.
Bài 6: Tính giá trị của biểu thức sau bằng cách hợp lí:
A=x^5-100x^4+100x^3-100x^2+100x-9 tại x=99.
5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6
= -6a - 6 = -6(a + 1) \(⋮\)6
<=> -6(a + 1) \(⋮\)6 \(\forall\)a \(\in\)Z
<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)a \(\in\)Z
6. Thay x = 99 vào biểu thức A, ta có:
A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9
A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9
A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9
A = 99 - 9
A = 90
Vậy ....
Bài 3:
(3x-1)(2x+7)-(x+1)(6x-5)=16.
=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16
=> 6x2+21x-2x-7-6x2+5x-6x+5=16
=> 18x-2=16
=> 18x=16+2
=> 18x=18
=> x=1
Bài 4:
ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)⋮6\)
⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)
Bài 6:
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)
\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)
Thay 99=x, ta được:
\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)
\(\Rightarrow A=x-9\)
Thay x=99 ta được:
\(A=99-9=90\)
TL:
bài 4:
<=>n^2+5n-n^2-2n+3n+6
<=>6n+6
<=>6(n+1)
mà 6(n+1)\(⋮\) 6
=>n(n+5)-(n-3)(n+2)\(⋮\) 6(đpcm)
Tính giá trị biểu thức một cách hợp lí:
a)A=x5-100x4+100x3-100x-9 tại x=99
b)B=x6-20x5-20x4-20x3-20x2-20x+3 tại x=2
c)C= x7-26x6-27x5-47x4-77x3+50x2+x-24 tại x=25
Ai làm giúp với