Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Tùng
Xem chi tiết
Duy Tran Vu
12 tháng 6 2017 lúc 16:09

x + y = 7/12  =>  x = 7/12 - y
y + z = -19/24  =>  z = -19/24 - y
Mà z + x = 1/8  =>  7/12 - y - 19/24 - y = 1/8
=>  2y = 7/12 - 19/24 - 1/8  =>  2y = -1/3
=> y = -1/6

Nguyễn Xuân Tùng
12 tháng 6 2017 lúc 16:13

thank

Tạ Duy Khoa
Xem chi tiết

Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.

Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.

                             25 - y2 = 8( \(x\) - 2015)2

                             ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\)  (1) 

   Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y≤ 25 ∀ y 

                         ⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)

                        ⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)

 Kết hợp (1) và (2) ta có:  0  ≤  (\(x-2015\))2 ≤ 3,125 

vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z 

                ⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}       

                th1:(\(x-2015\)  )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5

     th2:(\(x-2015\))= 1⇒ 25 - y2 = 8  ⇒ y2 = 25 - 8  ⇒ y = +- \(\sqrt{17}\) ( loại)

          th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)

          th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)

Vậy (\(x,y\)) = ( 2015; -5);  ( 2015; 5) là giá trị thỏa mãn đề bài

          

          

 

                        

                    

         

 

Nguyễn Thị Minh Ánh
Xem chi tiết
kudo shinichi
Xem chi tiết
Đỗ Ngọc Tường Quyên
Xem chi tiết
Nguyễn Ngọc Bích
Xem chi tiết
Lấp La Lấp Lánh
3 tháng 9 2021 lúc 10:46

a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)

               \(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)

b)Ta có:  \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)

               \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)

c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)

Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)

 

 

Edogawa Conan
Xem chi tiết
Edogawa Conan
Xem chi tiết
Anh hùng nhỏ
26 tháng 4 2018 lúc 18:58

qua de

Edogawa Conan
Xem chi tiết