Tìm x,y,z thuộc Z. x(x+1)(x+7)(x+8) = y2
cho x,y,z thuộc Q biết x+y=7/12, y+z= -19/24 , z+x=1/8. tìm x,y,z
x + y = 7/12 => x = 7/12 - y
y + z = -19/24 => z = -19/24 - y
Mà z + x = 1/8 => 7/12 - y - 19/24 - y = 1/8
=> 2y = 7/12 - 19/24 - 1/8 => 2y = -1/3
=> y = -1/6
help me!
Tìm x;y thuộc Z biết: 25-y2 =8(x-2015)2
Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.
Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.
25 - y2 = 8( \(x\) - 2015)2
ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\) (1)
Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y2 ≤ 25 ∀ y
⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)
⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)
Kết hợp (1) và (2) ta có: 0 ≤ (\(x-2015\))2 ≤ 3,125
vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z
⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}
th1:(\(x-2015\) )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5
th2:(\(x-2015\))2 = 1⇒ 25 - y2 = 8 ⇒ y2 = 25 - 8 ⇒ y = +- \(\sqrt{17}\) ( loại)
th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)
th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)
Vậy (\(x,y\)) = ( 2015; -5); ( 2015; 5) là giá trị thỏa mãn đề bài
tìm x,y thuộc Z ,biêt: (2x-1).(2x+1)=-35
tìm c,y thuộc Z , biết: (x+1)^2 + (y+1)^2 + (x-y)^2 =2
tìm x,y thuộc Z, biết: (x^2-8).(x^2-15)<0
tìm x,y thuộc Z biết: x=6.y và|x|-|y|=60
tìm a,b thuộc Z biết: |a|+|b|<2
tìm x, y, z thuộc z biết x + y = -8
y-z = 4
7 -x = -6
1) Tìm x,y,z thuộc Z biết: -1/2<x/24<y/12<z/8<-1/3
2) Tìm x,y thuộc Z biết: x-2/3=1/y+1 và x+7<0, y khác 1
3) Tìm 2 phân số có mẫu bằng 9; các tử là hai số tự nhiên liên tiếp sao cho phân số 4/7 nằm giữa hai phân số đó
Bài 1: Tìm x,y,z:
a) \(\dfrac{x}{y}\)=\(\dfrac{10}{9}\); \(\dfrac{y}{z}\)=\(\dfrac{3}{4}\); x-y+z =78
b)\(\dfrac{x}{y}=\dfrac{9}{7}\);\(\dfrac{y}{z}\)=\(\dfrac{7}{3}\); x-y+z =-15
c)\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{3}\); x2 +y2+z2=200
a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)
\(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)
b)Ta có: \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)
Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)
1.Tìm X thuộc Z biết:
a.(-4).\(\left(x-2\right)^2=-100\)
b.3.(2.X+8)-(5.X+2)=0
c. 5.(7-3.X)+7.(2+2.X)=0
2.CM các đẳng thức sau:
a) x.(y+z)-y.(x-z)=(x+y).z
b) x.(y-z)-x.(y+a)= -x.(z+a)
1.Tìm X thuộc Z biết:
a.(-4).\(\left(x-2\right)^2=-100\)
b.3.(2.X+8)-(5.X+2)=0
c. 5.(7-3.X)+7.(2+2.X)=0
2.CM các đẳng thức sau:
a) x.(y+z)-y.(x-z)=(x+y).z
b) x.(y-z)-x.(y+a)= -x.(z+a)
1.Tìm X thuộc Z biết:
a.(-4).\(\left(x-2\right)^2=-100\)
b.3.(2.X+8)-(5.X+2)=0
c. 5.(7-3.X)+7.(2+2.X)=0
2.CM các đẳng thức sau:
a) x.(y+z)-y.(x-z)=(x+y).z
b) x.(y-z)-x.(y+a)= -x.(z+a)