tìm x biết :
\(\frac{x+2019}{x+2018}=\frac{4038}{4037}\)
tìm số tự nhiên x sao cho x +2019/ x+ 2018= 4038/4037
x+2019/x+2018=4038/4037 giúp mình với phân tích giải rõ mình tích cho ( bài thi toán tuổi thơ cấp quốc gia ở Đà Nẵng ) đừng giải kiểu 4038-2019 hoặc 4037-2018 nhé ! Sai đấy
😊😊😊
\(\frac{x+2019}{x+2018}=\frac{4038}{4037}\)
\(\Rightarrow\left(x+2019\right)4037=\left(x+2018\right)4038\)
\(\Rightarrow4037x+\left(4037\times2019\right)=4038x+\left(4038\times2018\right)\)
\(\Rightarrow4037x+8150703=4038x+8148684\)
\(\Rightarrow4037x-4038x=-8150703+8148684\)
\(\Rightarrow-x=-2019\)
\(\Rightarrow x=2019\)
P/s: Số to kinh -_- Ko chắc đúng đâu.
Tìm x biết |2019-x|=4038*107-106/2018*107+54 please làm giúp mks thank you
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) và \(x^2+y^2=1\) . CMR: \(\frac{x^{4038}}{a^{2019}}+\frac{y^{4038}}{b^{2019}}=\frac{2}{\left(a+b\right)^{2019}}\).
Cho x, y khác 0 và xy>2019. CMR:
\(\frac{2019}{2019+x^2}+\frac{2019}{2019+y^2}\ge\frac{4038}{2019+xy}\)
Ta chứng minh 1 bổ đề sau: Với a;b lớn hơn hoặc bằng 1 thì \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
Thật vậy: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow a^2+a^3b+b^2+b^3a+2+2ab\ge2a^2+2b^2+2a^2b^2+2\)
\(\Leftrightarrow a^3b+b^3a+2ab-a^2-b^2-2a^2b^2\ge0\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)(đúng với a;b>=1)
Trở lại bđt trong bài: \(\frac{2019}{2019+x^2}+\frac{2019}{2019+y^2}\ge\frac{4038}{2019+xy}\)
\(\Leftrightarrow\frac{1}{2019+x^2}+\frac{1}{2019+y^2}\ge\frac{2}{2019+xy}\) bđt này tương tự với bđt vừa cm trong bài,với x;y là hoán vị của a;b và 2019 có vai trò như 1
tìm x , biết :
\(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)
Ta có: \(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)
\(\Leftrightarrow\left(\frac{x-2019}{2018}+1\right)+\left(\frac{x-2018}{2017}+1\right)=\left(\frac{x-2017}{2016}+1\right)+\left(\frac{x-2016}{2015}+1\right)\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}=\frac{x-1}{2016}+\frac{x-1}{2015}\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}-\frac{x-1}{2016}-\frac{x-1}{2015}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x-1=0\)( vì \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\))
\(\Leftrightarrow x=1\)
Vạy x=1
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
Cho
\(A=1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{4038}\)
\(B=1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4037}\)
So Sánh :\(\frac{A}{B}\)và \(1\frac{2019}{2020}\)
cho a, b thỏa mãn a2 + b2 = 1 và \(\frac{a^4}{2018}+\frac{b^4}{2019}=\frac{1}{4037}\)
Tính giá trị của biểu thức \(P=\frac{a^{2018}}{2018^{1009}}+\frac{b^{2018}}{2019^{2018}}\)
\(\frac{a^4}{2018}+\frac{b^4}{2019}=\frac{1}{4037}\)
\(\Leftrightarrow\frac{2019a^4+2018b^4}{2018\cdot2019}=\frac{a^2+b^2}{2018+2019}\)
\(\Leftrightarrow\left(2018+2019\right)\left(2019a^4+2018b^4\right)=2018\cdot2019\left(a^2+b^2\right)\)
\(\Leftrightarrow2019^2\cdot a^4+2018^2\cdot b^4+2018\cdot2019\cdot a^4+2018\cdot2019b^4=2018\cdot2019\cdot a^2+2018\cdot2019\cdot b^2\)
\(\Leftrightarrow2019^2\cdot a^4+2018^2\cdot b^4=2018\cdot2019\cdot a^2\left(1-a^2\right)+2018\cdot2019\cdot b^2\left(1-b^2\right)\)
\(\Leftrightarrow\left(2019a^2\right)^2+\left(2018b^2\right)^2=2\cdot2018\cdot2019\cdot a^2\cdot b^2\)
\(\Leftrightarrow\left(2019a^2-2018b^2\right)=0\)
\(\Leftrightarrow2019a^2=2018b^2\Leftrightarrow\frac{a^2}{2018}=\frac{b^2}{2019}=\frac{a^2+b^2}{2018+2019}=\frac{1}{4037}\)
\(\Rightarrow\frac{a^{2018}}{2018^{10009}}=\frac{b^{2018}}{2019^{1009}}=\frac{1}{4037^{1009}}\)
\(\Rightarrow P=\frac{2}{4037^{1009}}\)