Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Minh Nguyệt
Xem chi tiết
Thắng Nguyễn
3 tháng 9 2017 lúc 15:56

Ta có: \(M=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{224}+\sqrt{225}}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{225}-\sqrt{224}\)

\(=-1+\sqrt{225}=-1+15=14\)

Và \(N=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{63}}\)

\(=14,47706...>14=M\)

Xem chi tiết
I - Vy Nguyễn
1 tháng 3 2020 lúc 23:00

a)Ta có:\(\sqrt{17}>\sqrt{16}\)

             \(\sqrt{26}>\sqrt{25}\)

\(\implies\) \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)

\(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)

Mà \(\sqrt{100}=10\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{100}\)

Mà \(\sqrt{100}>\sqrt{99}\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

b)Ta có:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=100.\frac{1}{\sqrt{100}}\)

\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{10}.100=10\)

\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>10\left(đpcm\right)\)

Khách vãng lai đã xóa
Bùi Phúc Hoàng Linh
Xem chi tiết
Haley
Xem chi tiết
Thắng Nguyễn
2 tháng 7 2017 lúc 9:25

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))

nguyen van giao
Xem chi tiết
hotboy
Xem chi tiết
Quandung Le
Xem chi tiết
Kiệt Nguyễn
8 tháng 7 2019 lúc 9:55

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

..........

..........

..........

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100=\frac{100}{10}=10\)

Vậy \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Quỳnh Đặng Diễm
Xem chi tiết
Minh Bui Tuan Minh
23 tháng 7 2016 lúc 16:43

mình chỉ giải được phần này thôi

b.A = \(\sqrt{17}\)+\(\sqrt{26}\)+ 1 > \(\sqrt{16}\)+\(\sqrt{25}\)+ 1 = 4 + 5 +1 = 10

B = \(\sqrt{99}\)<\(\sqrt{100}\)= 10

=> A > B

Nguyễn Thảo My
Xem chi tiết

Ta có

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

........................................

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)

=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)(100 số\(\frac{1}{10}\))  >10

Lê Thị Nhật Quỳnh
Xem chi tiết
Ngô Chi Lan
28 tháng 9 2020 lúc 17:51

Xét phân thức phụ sau, với n nguyên dương lớn hơn 1 ta có:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{2\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}\right)^2\sqrt{n}}=2\left(\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}\right)\sqrt{n}}\right)\)

\(=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

=> \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán ta được:

\(A=2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\right)\)

\(A=2-\frac{2}{\sqrt{2020}}< 2=B\)

Vậy A < B

Khách vãng lai đã xóa