phân tích đa thức sau thành nhân tử: xy+xz+3x+3z
kết quả ra nhiêu luôn nhe
nhờ giải giupws em với a
1. Phân tích các đa thức sau thành nhân tử:
a) 5x2 – 10xy
b) 3x(x – y) – 6(x – y)
c) 2x(x – y) – 4y(y – x)
d) 9x2 – 9y2
e) x2 – xy – x + y
f) xy – xz – y + z
2. Phân tích các đa thức sau thành nhân tử:
a)a2 – 4b2 b) x2 – y2 + 6y - 9
c) (2a + b)2 – a2 d) 16(x – 1)2 – 25(x + y)2
e)x2 + 10x + 25 f) 25x2 – 20xy + 4y2
g)9x4 + 24x2 + 16 h) x3 – 125
i)x6 – 1 k) x3 + 15x2 + 75x + 125
3. Tìm x biết :
a) 3x2 + 8x = 0 b) 9x2 – 25 = 0 c) x3 – 16x = 0 d) x3 + x = 0.
4. Chứng minh rằng với mọi số nguyên a thì: a3 – a chia hết cho 6
Bài `1`
\(a,5x^2-10xy=5x\left(x-2y\right)\\ b,3x\left(x-y\right)-6\left(x-y\right)=\left(x-y\right)\left(3x-6\right)\\ =3\left(x-y\right)\left(x-2\right)\\ c,2x\left(x-y\right)-4y\left(y-x\right)=2x\left(x-y\right)+4y\left(x-y\right)\\ =\left(x-y\right)\left(2x+4y\right)=2\left(x-y\right)\left(x+2y\right)\\ d,9x^2-9y^2=\left(3x\right)^2-\left(3y\right)^2=\left(3x-3y\right)\left(3x+3y\right)\\ f,xy-xz-y+z=\left(xy-xz\right)-\left(y-z\right)\\ =x\left(y-z\right)-\left(y-z\right)=\left(y-z\right)\left(x-1\right)\)
Bài `3`
\(a,3x^2+8x=0\\ \Leftrightarrow x\left(3x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{8}{3}\end{matrix}\right.\)
\(b,9x^2-25=0\\ \Leftrightarrow\left(3x\right)^2-5^2=0\\ \Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
\(c,x^3-16x=0\\ \Leftrightarrow x\left(x^2-16\right)=0\\ \Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
\(d,x^3+x=0\\ \Leftrightarrow x\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1\in\varnothing\\x=0\end{matrix}\right.\Rightarrow x=0\)
Phân tích đa thức sau thành nhân tử
xy+xz+3x+3z
mọi người giúp mk vs mk cần gấp lắm ,thanks nhìu nha
1. Phân tích các đa thức sau thành nhân tử:
a) 5x2 – 10xy
b) 3x(x – y) – 6(x – y)
c) 2x(x – y) – 4y(y – x)
d) 9x2 – 9y2
e) x2 – xy – x + y
f) xy – xz – y + z
Lời giải:
a. $5x^2-10xy=5x(x-2y)$
b. $3x(x-y)-6(x-y)=(x-y)(3x-6)=3(x-y)(x-2)$
c. $2x(x-y)-4y(y-x)=2x(x-y)+4y(x-y)=(x-y)(2x+4y)=2(x-y)(x+2y)$
d. $9x^2-9y^2=9(x^2-y^2)=9(x-y)(x+y)$
e. $x^2-xy-x+y=(x^2-xy)-(x-y)=x(x-y)-(x-y)=(x-y)(x-1)$
f. $xy-xz-y+z=(xy-y)-(xz-z)=y(x-1)-z(x-1)=(x-1)(y-z)$
Phân tích đa thức thành nhân tử: xy+xz-5x-5y
Answer:
\(xy+xz-5x-5y=x(y+z) - 5( x-y)\)
phân tích đa thức sau thành nhân tử :
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích các đa thức sau thành nhân tử:
a ) x y – 3 x + 2 y – 6
a) xy – 3x + 2y – 6
= (xy - 3x) + (2y - 6)
= x(y - 3) + 2(y - 3)
= (y - 3)(x + 2)
phân tích đa thức thành nhân tử : xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích đa thức thành nhân tử:
xyz - ( xy + yz - xz) + ( x + y + z) -1
\(xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)
\(=xyz-xy-yz+y-xz+x+z-1\)
\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+z-1\)
\(=\left(xy-y-x+1\right)\left(z-1\right)\)
\(=[\left(x-1\right)y-\left(x-1\right)]\left(z-1\right)\)
\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
phân tích đa thức thành nhân tử:
xy(x+y)-yz(y+z)+xz(x-z)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
.
.
.
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)