cho x+y+z = 0 và xy+yz+zx=0. tính giá trị của biểu thức:
B = (x-1)2007+ y2008+ (z+1)2009
Cho x+y+z = 0 và xy+yz+zx= 0. Tính giá trị biểu thức:
\(B=\left(x-1\right)^{2007}+y^{2008}+\left(z+1\right)^{2009}\)
\(x+y+z=0\)
\(\Rightarrow\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
Mà \(xy+yz+xz=0\)
\(\Rightarrow x^2+y^2+z^2+2.0=0\)
\(\Rightarrow x^2+y^2+z^2=0\)
Mà \(x^2\ge0\)
\(y^2\ge0\)
\(z^2\ge0\)
\(\Rightarrow x^2+y^2+z^2\ge0\)
Mà \(x^2+y^2+z^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
\(\Rightarrow B=\left(0-1\right)^{2007}+0^{2008}+\left(0+1\right)^{2009}\)
\(=\left(-1\right)^{2007}+0+1^{2009}\)
\(=-1+0+1\)
\(=0\)
Vậy ...
1/ Cho x+y+z=0 và xy+yz+zx=0 Tính giá trị của biểu thức :
B=(x-1)2007+y2008+(z+1)2009
\(x+y+z=0< =>\left(x+y+z\right)^2=0< =>x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
\(< =>x^2+y^2+z^2=0< =>x=y=z=0\)
\(B=\left(-1\right)^{2007}+0+1^{2009}=0\)
x+y+z=0
\(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\)( vì xy+yz+zx=0)
Mà \(x^2+y^2+z^2\ge0\forall x,y,z\Rightarrow x=y=z=0\)
\(\Rightarrow B=\left(0-1\right)^{2007}+0^{2008}+\left(0+1\right)^{2009}\)
= -1+0+1=0
Vậy B=0
Cho x+y+z=0 và xy+yz+xz=0-Tính giá trị của biểu thức
\(B=\left(x-1\right)^{2007}+y^{2008}+\left(z+1\right)^{2009}\)
\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2.0\)
\(\Rightarrow x^2+y^2+z^2=0\Rightarrow x=y=z=0\)
\(B=\left(-1\right)^{2007}+0^{2008}+1^{2009}=0\)
a) Cho a+b+c = 0 và a2+b2+c2 = 14. Tính giá trị của A =a4+b4+c4
b) Cho x+y+z = 0 và xy+yz+zx = 0. Tính giá trị B = (x-1)2007 + y2008 + (z+1)2009
\(a,\)\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có: \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)=196\)\(\Leftrightarrow a^{^{ }4}+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)\(\Leftrightarrow\)\(a^4+b^4+c^4=98\)
Cho ba số x, y, z thỏa mãn các điều kiện x+ y+ z=0 và xy+ yz+ zx = 0
Tính giá trị của biểu thức sau : P = (x - 1)2003 + y2004 + (z + 1)2005
\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+0\)
\(\Rightarrow x^2+y^2+z^2=0\)
\(\Rightarrow x=y=z=0\)
\(P=\left(-1\right)^{2003}+0^{2004}+1^{2005}=0\)
\(\text{cho x,y,z là các số thực khác 0 và thỏa mãn điều kiện xy+yz+zx=0. Tính giá trị của biểu thức A= }\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}\)
\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}=\dfrac{x^2y+xy^2+y^2z+yz^2+x^2z+xz^2}{xyz}=\dfrac{-3xyz}{xyz}=-3\)
đề cho xy+yz+xz=0 nhân cả 2 vế với -z
=>-xyz-\(z^2\left(y+x\right)\)=0
=>-xyz=\(z^2x+z^2y\)
cmtt bạn nhân với -y và -z
=>-3xyz=\(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\)
Cho x,y,z#0 thỏa mãn : \(xy+yz+zx=0\) và \(x+y+z=-1\)Hãy tính giá trị biểu thức \(M=\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\)
Ta có :x + y + z = -1 \(\Rightarrow\)x + y =-( 1 + z )
xy + yz + xz = 0 \(\Rightarrow\)xy = - z ( x + y ) = z ( z + 1 )
Tương tự : xz = y ( y + 1 ) ; yz = x . ( x + 1 )
\(M=\frac{z\left(z+1\right)}{z}+\frac{y\left(y+1\right)}{y}+\frac{x\left(x+1\right)}{x}=x+y+z+3=2\)
Cho 3 số x y z thỏa mãn điều kiện x + y + z bằng 0 và xy+yz+zx=0.tính giá trị của biểu thức: S=(x-1)2005+(y-1)2006+(z+1)2007
Vì x+y+z=0;xy+yz+xz=0
⇒(x+y+z)2=x2+y2+z2+2(xy+yz+xz)=0
⇒(x+y+z)2=x2+y2+z2=0
⇒x=y=z=0
⇒S=(x−1)2005+(y−1)2006+(z+1)2007=(−1)2005+(−1)2006+12007=1