Tìm GTNN của biểu thức: \(y=2+\sqrt{2x^2-4x+5}\)
tìm GTNN của biểu thức
\(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\)
tìm GTNN của biểu thức
\(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\)
Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)
\(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)
\(\Rightarrow\) \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)
Vậy GTNN của biểu thức là 4
Tìm GTNN của biểu thức A=\(\sqrt{2x^2-2x+5}+\sqrt{2x^2-4x+4}\)
\(\sqrt{2}A=\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\)
\(\sqrt{2}A=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\)
Áp dụng BĐT \(\sqrt{A^2+B^2}+\sqrt{C^2+D^2}\ge\sqrt{\left(A+C\right)^2+\left(B+D\right)^2}\)
=>\(\sqrt{2}A\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\)
=>\(A\ge\sqrt{13}\)
Dấu bằng xảy ra<=> \(\frac{2x-1}{3}=\frac{2x-2}{2}\)
<=>.........
Bài 1 : Giai phương trình sau :
\(\sqrt{2x-2+2\sqrt{2x-3}}\) + \(\sqrt{2x+13+8\sqrt{2x-3}}=5\)
Bài 2 : Tìm GTNN của biểu thức sau :
A = \(\sqrt{4X^2-4X+1}+\sqrt{4X^2-12X+9}\)
a) Tìm GTNN của biểu thức A = x2 - 2x +5
b) Tìm GTNN của biểu thức B = 2x2 - 6x
c) Tìm GTNN của biểu thức C = 4x - x2 = 3
a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4
Min là 4 khi x = 1
Tìm GTNN của biểu thức :
\(\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}\)
Đặt \(A=\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}\)
\(A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-2\right)^2}\)
\(A=\left|x+1\right|+\left|x-2\right|\)
\(A=\left|x+1\right|+\left|2-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(A=\left|x+1\right|+\left|2-x\right|\ge\left|x+1+2-x\right|=\left|3\right|=3\)
Đẳng thức xảy ra khi ab ≥ 0
=> ( x + 1 )( 2 - x ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+1\ge0\\2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\-x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le2\end{cases}}\Leftrightarrow-1\le x\le2\)
2. \(\hept{\begin{cases}x+1\le0\\2-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\-x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge2\end{cases}}\)( loại )
=> MinA = 3 <=> \(-1\le x\le2\)
Tìm GTNN của biểu thức \(A=2x+\sqrt{4x^2-4x+1}\)
Ta có: \(A=2x+\sqrt{4x^2-4x+1}\)
\(=2x+\sqrt{\left(2x-1\right)^2}=2x+\left|2x-1\right|\)
TH1: \(x\ge\frac{1}{2}\). Khi đó \(A=2x+2x-1=4x-1\ge4.\frac{1}{2}-1=\frac{7}{2}\)
TH2: \(x< \frac{1}{2}\). Khi đó \(A=2x+1-2x=1\)
Vậy GTNN của A là 1 với mọi \(x< \frac{1}{2}\)
Chúc em học tập tốt :)
Tìm GTNN của biểu thức :
D = \(x+2y-\sqrt{2x-1}-5\sqrt{4y-3}+13\) (x ≥ 1/2, y ≥ 3/4)
Helppp!!! :(
Tìm GTNN của các biểu thức:
\(B=\sqrt{2x^2-4x+10}\)
\(B=\sqrt{2x^2-4x+10}=\sqrt{2\left(x^2-2x+1\right)+8}\)
\(B=\sqrt{2\left(x-1\right)^2+8}\ge8\)
Vậy GTNN của B là 8 \(\Leftrightarrow x=1\)
\(B=\sqrt{2x^2-4x+10}=\sqrt{\left(2x^2-4x+2\right)+8}=\sqrt{2\left(x^2-2x+1\right)+8}=\sqrt{2\left(x-1\right)^2+8}\)
Ta có \(2\left(x-1\right)^2\ge0\)
để \(2\left(x-1\right)^2\)nhỏ nhất thì \(x=1\)
Vậy tại \(x=1\)thì \(GTNN_B=\sqrt{2\left(1-1\right)^2+8}=\sqrt{0+8}=\sqrt{8}\)
vãi. mình nhầm nhá . thay GTNN 8 thành \(2\sqrt{2}\)