Cho \(\Delta\)ABC cân tại đỉnh A có góc A nhọn,đường cao BH.CMR:
\(\frac{AH}{HC}=\frac{1}{2}\left(\frac{BC}{CH}\right)^2-1\)
Cho \(\Delta ABC\) cân ở A (góc A< 900) đường cao BH.CMR:
\(\frac{AH}{HC}=2\left(\frac{AB}{BC}\right)^2-1\)
Cho tam giác ABC cân tại A, có góc A nhọn . Vẽ đường cao BH. CMR: \(\frac{AH}{HC}=2\left(\frac{AB}{BC}\right)^2-1\)
Kẻ đường cao AK.
- ΔABC cân tại A có đường cao AH đồng thời là đường trung tuyến nên BK = CK = BC/2
- Xét ΔAKC và ΔBHC có :
Góc AKC = góc BHC = 90⁰ (AK, BH là đường cao trong ΔABC)
Góc C chung
Vậy ΔAKC đồng dạng với ΔBHC (g.g.)
⇨ AC/BC = KC/HC
⇔ AB/BC = BC/2HC (AB = AC do ΔABC cân tại A, KC = BC/2 cmt)
⇔ 2AB.HC = BC² (tỉ lệ thức : ngoại tỉ bằng trung tỉ)
⇔ 1/HC = 2AB/BC²
⇔ AB/HC = 2AB²/BC² (nhân AB vào 2 vế)
⇔ AC/HC = 2(AB/BC)² (AB = AC)
⇔ (AH + HC)/HC = 2(AB/BC)²
⇔ AH/HC + 1 = 2(AB/BC)²
⇔ AH/HC = 2(AB/BC)² - 1 (điều cần chứng minh)
Cho tam giác ABC cân tại A, góc A nhọn, đường cao BH.
CMR: \(\frac{AH}{HC}=2\left(\frac{AB}{BC}\right)^2-1\)
Gọi E là điểm đối xứng của C qua A
=> \(\Delta\)BCE vuông tại E => \(HC=\frac{BC^2}{CE}=\frac{BC^2}{2AC}\)
\(AH=AC-HC=AC-\frac{BC^2}{2AC}=\frac{2AC^2-BC^2}{2AC}\)
\(\Rightarrow\frac{AH}{HC}=2\left(\frac{AC}{BC}\right)^2-1\)
Cho tam giác ABC cân tại A ( góc A nhọn), đường cao BH. Chứng minh \(\frac{AH}{BH}=2\left(\frac{AB}{BC}\right)^2-1\)
vẽ thêm đường phụ là góc D đối xứng C qua A là dc
Cho tam giác ABC cân tại A (góc A < 90 độ), đường cao BH. CMR: \(\frac{AH}{CH}=2\left(\frac{AB}{BC}\right)^2-1\)
Cho \(\Delta ABC\)cân tại A ( \(\widehat{A}\)nhọn ) đường cao AE, BK.
\(CMR:\frac{AE}{EC}=\left(\frac{AB}{BC}\right)^2-1\)
Cho tam giác ABC có 3 góc nhọn với đường cao AD,BE,CF cắt nhau tại H
a, Cmr : \(\Delta AEF\sim\Delta ABC;\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b, Cmr : \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cmr :\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge3\)
a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)
SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))
b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC
=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC
Cho \(\Delta ABC\)Vuông tại A,AH Là đường cao.Biết \(\frac{HB}{HC}=\frac{1}{2}\)CM \(\left(\frac{AB}{AH}\right)^2=\frac{3}{2}\)
Cho \(\Delta ABC\)cân tại A có AH và BK là 2 đường cao. C/m: \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
Qua B kẻ đường thẳng vuông góc với BC cắt tia đối tia AC tại D
Vì \(\Delta ABC\) cân tại A có AH là đường cao nên AH cũng là đường phân giác nên HB=HC
Vì \(\hept{\begin{cases}BD\perp BC\\AH\perp BC\end{cases}}\)\(\Rightarrow BD//AH\)
Xét \(\Delta BCD\) có \(\hept{\begin{cases}AH//BD\\BH=CH\end{cases}}\)\(\Rightarrow AD=AC\)
Xét \(\Delta BCD\) có \(\hept{\begin{cases}CH=HB\\AD=AC\end{cases}}\)\(\Rightarrow\)AH là đường trung bình của \(\Delta BCD\)
\(\Rightarrow BD=2AH\)
Áp dụng hệ thức lượng trong tam giác vuông:\(\frac{1}{BK^2}=\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{4AH^2}+\frac{1}{BC^2}\)
ẤY chết mik vẽ thiếu 1 hình nữa thôi bn thông cảm nhưng hình kia đúng hơn bn ah
CMR:\(TG:AHC#TGBKC\left(gc\right)\)
\(=>\frac{HC}{KC}=\frac{AC}{BC}=>\frac{AC}{30}=\frac{15}{18}=\frac{5}{6}=AC=25\)
~HOK TỐT~