Tìm Min A= 2014\(\sqrt{x}\) + 2015\(\sqrt{1-x}\)
Chứng tỏ :
\(\dfrac{1}{\sqrt{x+2014}+\sqrt{y+2014}}-\dfrac{1}{\sqrt{2015-x}+\sqrt{2015-y}}+\dfrac{1}{\sqrt{2014-x}+\sqrt{2014-y}}\ne0\)
Tìm GTNN của biểu thức A, biết \(A=2014\sqrt{x}+2015\sqrt{1-x}.\)
a) Tính giá trị của biểu thức: \(A=2x^2+3x^2-4x+2\)
với \(x=\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
b) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
CM: x = y
Cho \(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
Chứng minh: x=y
cái nào có dạng giống nhau chuyển về 1 nhóm rồi nhân lien hợp
GL!
Tìm giá trị nhỏ nhất của biểu thức A = \(2014\sqrt{x}+2015\sqrt{1-x}\)
Tìm giá trị nhỏ nhất của biểu thức
A=\(2014\sqrt{x}+2015\sqrt{1-x}\)
cho a,b>0. tìm min của A=\(\sqrt{a+b}\)-\(\frac{1}{\sqrt{a+b}}\) +\(\frac{2015}{2014.a+2006.b+6.\sqrt{ab}}\)
Tìm GTNN của biểu thức A, biết \(A=2014\sqrt{x}+2015\sqrt{1-x}\)
cách khác:
ĐKXĐ của A là 0=<x=<1
ta chúng minh A>=A(1)=2014
thật vậy A>=2014<=> 2014(canx -1)+2015can(1-x)>=0
<=> 2014(x-1)/(canx+1)+2015can(1-x) >=0
<=> can(1-x)[ 2015-2014*can(1-x)/(canx+1)] >=0
Ta có can (1-x) >=0 và 2015-2014*can(1-x)/(canx+1) >=0
=> A>=2014 dấu bằng xảy ra khí x=1
Vậy Amin=2014 khi x=1
cái này anh đưa ra giả thuyết nhưng chưa có đưa về điều cần cm mà sao đúng dc
Cho x,y thỏa mãn \(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
CMR \(x=y\)