Tìm x,y nguyên biết: \(11x-5\sqrt{2x+1}=15y-5\sqrt{4y-1}+10\).
Tìm các số nguyên x,y thỏa mãn: \(\frac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y-1}+2\)
1./ Với mọi y nguyên thì: 4y - 1 nguyên và không phải số chính phương.
(vì ngược lại nếu 4y - 1 = m2 => m lẻ => 4y - 1 = (2k + 1)2 => 4y = 4k2 + 4k + 2. VT chia hết cho 4, VP không chia hết cho 4).
=> \(\sqrt{4y-1}\)là 1 số vô tỷ.
2./ Viết PT trở thành: \(\frac{11x}{5}-3y-2=\sqrt{2x+1}-\sqrt{4y-1}\)(2)
Đặt \(A=\frac{11x}{5}-3y-2\)(2) trở thành: \(A+\sqrt{4y-1}=\sqrt{2x+1}\). Bình phương 2 vế:
\(A^2+4y-1+2A\sqrt{4y-1}=2x+1\)
\(\Rightarrow2A\sqrt{4y-1}=2x+2-A^2-4y\)(3)
VT(3) là số vô tỷ để "=" VP(3) là 1 số hữu tỷ thì A = 0.
3./ Do đó: \(\sqrt{4y-1}=\sqrt{2x+1}\Rightarrow2x+1=4y-1\Rightarrow x=2y-1\)
Và: \(0=\frac{11x}{5}-3y-2\Rightarrow11\left(2y-1\right)-15y-10=0\Rightarrow y=3\Rightarrow x=5\).
4./ Phương trình có nghiệm nguyên duy nhất x = 5; y = 3.
Giai phương trình nghiệm nguyên :
\(\frac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y}-1+2\)
\(\frac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y-1}+2\)
\(\Leftrightarrow\sqrt{4y-1}-\sqrt{2x+1}=3y+2-\frac{11x}{5}\)
Vì 4y - 1 chia cho 4 có số dư là 2 nên \(\sqrt{4y-1}\)là số vô tỷ .
Ta có VP là số hữu tỉ. VT là số vô tỷ và \(\hept{\begin{cases}4y-1\\2x+1\end{cases}}\)là 2 số hữu tỷ nên.
\(\Rightarrow\sqrt{4y-1}-\sqrt{2x+1}=0\)
\(\Leftrightarrow x=2y-1\)
Thế lại phương trình ban đầu ta được.
\(\Rightarrow y=3\)
\(\Rightarrow x=5\)
Vậy nghiệm cần tìm là \(\hept{\begin{cases}x=5\\y=3\end{cases}}\)
11x5 −√2x+1=3y−√4y−1+2
⇔√4y−1−√2x+1=3y+2−11x5
Vì 4y - 1 chia cho 4 có số dư là 2 nên √4y−1là số vô tỷ .
Ta có VP là số hữu tỉ. VT là số vô tỷ và {
4y−1 |
2x+1 |
là 2 số hữu tỷ nên.
⇒√4y−1−√2x+1=0
⇔x=2y−1
Thế lại phương trình ban đầu ta được.
⇒y=3
⇒x=5
Vậy nghiệm cần tìm là {
x=5 |
y=3 |
@alibaba_nguyễn chép sai đề rồi kìa bạn
Tìm các số nguyên x , y thỏa mãn :
\(\frac{7y}{5}+\sqrt{29x+3}+1=\sqrt{4y^2+4y-1}+2x\)
toan lop 9 kho dui
ban dua cau hoi nay len 24h di
1. Tìm GTLN, NN của:
Q = \(\sqrt{x+1}+\sqrt{3-x}-2\sqrt{\left(x+1\right)\left(3-x\right)}\)
2. Tìm x,y thuộc N:
\(\frac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y-1}+2\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}4\left(2x\sqrt{2x-1}-y^3-3y^2\right)=15y+7+\sqrt{2x+1}\\\sqrt{\frac{y\left(y+2\right)}{2}}+\sqrt{6-x}=2x^2+2y^2-15x+4y+12\end{matrix}\right.\)
1)tìm tất cả các bộ số nguyên (x;y;z)thỏa mãn phương trình
\(2^x+2^y+2^z=672\)
2)a)giải phương trình
\(5\sqrt{x+5}+5\sqrt{3x+4}=5x^2-11x-1\)
b)giải hệ phương trình
\(\hept{\begin{cases}x^2y^2+y^2=8\\2x^3y^3+xy^3-4y^2=8\end{cases}}\)
Cần gấp trong vòng 12h
Tìm GTNN của biểu thức :
D = \(x+2y-\sqrt{2x-1}-5\sqrt{4y-3}+13\) (x ≥ 1/2, y ≥ 3/4)
Helppp!!! :(
\(\left\{{}\begin{matrix}8\sqrt{xy-2y}-8y+4=\left(x-y\right)^2\\2\sqrt{2y-y^2}\left(\sqrt{8-2x}-2\sqrt{2y}+1\right)=4y+5\sqrt{2-y}-10\sqrt{x-2}\end{matrix}\right.\)
Các điều kiện xác định hợp lại sẽ là \(\left\{{}\begin{matrix}2\le x\le4\\0\le y\le2\end{matrix}\right.\)
Ta có \(8\sqrt{xy-2y}-8y+4\) \(=8\sqrt{y\left(x-2\right)}-8y+4\) \(\le4\left(y+x-2\right)-8y+4\) (BĐT AM-GM) \(=4\left(x-y\right)-4\)
Do vậy, \(\left(x-y\right)^2=8\sqrt{xy-2y}-8y+4\le4\left(x-y\right)-4\) \(\Leftrightarrow\left(x-y\right)^2-4\left(x-y\right)+4\le0\) \(\Leftrightarrow\left(x-y-2\right)^2\le0\) \(\Leftrightarrow x-y-2=0\) \(\Leftrightarrow y=x-2\), điều này cũng thỏa mãn ĐTXR của BĐT \(8\sqrt{y\left(x-2\right)}=4\left(y+x-2\right)\). Do đó, pt đầu tiên của hệ \(\Leftrightarrow y=x-2\) hay \(x=y+2\)
Thay vào pt thứ 2 của hệ, ta có
\(2\sqrt{2y-y^2}\left(\sqrt{4-2y}-2\sqrt{2y}+1\right)=4y+5\sqrt{2-y}-10\sqrt{y}\)
\(\Leftrightarrow\left(4-2y\right)\sqrt{2y}-4y\sqrt{4-2y}+2\sqrt{y\left(2-y\right)}=4y+5\sqrt{2-y}-10\sqrt{y}\)
Mình mới làm được đến đây thôi. Mình phải đi ngủ rồi, thế nên mai mình suy nghĩ tiếp nhé.
Giải phương trình nghiệm nguyên
\(\dfrac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y-1}+2\)
\(\dfrac{11x}{5}-\sqrt{2x+1}=3y-\sqrt{4y-1}+2\)
\(\Leftrightarrow\sqrt{4y-1}-\sqrt{2x+1}=3y+2-\dfrac{11x}{5}\)
Vì 4y - 1 chia cho 4 có số dư là 2 nên \(\sqrt{4y-1}\) là số vô tỉ
Tta có VP là số hữu tỉ. VT là số vô tỉ và \(\left\{{}\begin{matrix}4y-1\\2x+1\end{matrix}\right.\) là 2 số hữu tỉ nên:\(\Rightarrow\sqrt{4y-1}-\sqrt{2x+1}=0\)
\(\Leftrightarrow x=2y-1\)
Thế lại phương trình ban đầu ta được:
\(\Rightarrow y=3\\ \Rightarrow x=5\)
Vậy nghiệm cần tìm là \(\left\{{}\begin{matrix}x=5\\y=3\end{matrix}\right.\)
Chúc bạn học tốt