Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Giang
Xem chi tiết
Truong Viet Truong
14 tháng 2 2019 lúc 22:07

\(A=\left(x^2+3x+4\right)^2\)

ta có:

\(x^2+3x+4=x^2+2\cdot\dfrac{3}{2}x+\left(\dfrac{3}{2}\right)^2+\dfrac{7}{4}\\ =\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

vậy \(minA=\left(\dfrac{7}{4}\right)^2=\dfrac{49}{16}\Leftrightarrow x=-\dfrac{3}{2}\)

grace chu
Xem chi tiết
Hoàng Lê Minh
Xem chi tiết
Cẩm Tú Đỗ
Xem chi tiết
Tiến Hoàng Minh
Xem chi tiết
Minh Nguyen
6 tháng 8 2020 lúc 11:23

Bạn xem lại đề bài 1 và 2.b nhé !

2/ \(A=\sqrt{\left(3-5\sqrt{2}\right)^2}-\sqrt{51+10\sqrt{2}}\)

\(A=5\sqrt{2}-3-\sqrt{\left(5\sqrt{2}+1\right)^2}\)

\(A=5\sqrt{2}-3-5\sqrt{2}-1\)

\(A=-4\)

Khách vãng lai đã xóa
Thầy Tùng Dương
Xem chi tiết
🤣🤣🤣 Ŧùɔ
14 tháng 5 2021 lúc 10:27

Em gửi ảnh ạ !

Khách vãng lai đã xóa
🤣🤣🤣 Ŧùɔ
14 tháng 5 2021 lúc 10:27

Em gửi ảnh trên ạ !!!!!

Khách vãng lai đã xóa
Nguyễn Huy Tú
14 tháng 5 2021 lúc 11:55

a, Ta có \(x=49\Rightarrow\sqrt{x}=7\)

Thay vào biểu thức A ta được : 

\(A=\frac{7.4}{7-1}=\frac{28}{6}=\frac{14}{3}\)

b, Với \(x\ge0;x\ne1\)

\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)( đpcm )

Khách vãng lai đã xóa
Trần Trung Hiếu
Xem chi tiết
Lê Văn Hoàng
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết