\(1.\)Tính
\(a)\frac{120^3}{40^3};\frac{390^4}{130^4};\frac{3^2}{0,375^2}\)
\(2.\)Tính giá trị các biểu thức sau :
\(a)\frac{45^{10}.5^{20}}{75^{15}}\) ; \(b)\frac{\left(0,8\right)^5}{\left(0,4\right)^6}\) ; \(c)\frac{2^{15}.9^4}{6^6.8^3}\)
Tính:
a)\(\frac{120^3}{40^3}\)
b)\(\frac{3^2}{\left(0.375\right)^2}\)
a) \(\frac{120^3}{40^3}=\left(\frac{120}{40}\right)^3=3^3=27\)
b) \(\frac{3^2}{0,375^2}=\left(\frac{3}{0,375}\right)^2=8^2=64\)
HỌC TỐT
Toán lớp 7???
\(a.\)\(\frac{120^3}{40^3}=\left(\frac{120}{40}\right)^3=3^3=27\)
\(b.\)\(\frac{3^2}{\left(0,375\right)^2}=\left(\frac{3}{0,375}\right)^2=8^2=64\)
~ Rất vui vì giúp đc bn ~
tính
\(\frac{120^3}{40^3}\)
\(\frac{390^4}{130^4}\)
\(\frac{3^2}{\left(0,375\right)^2}\)
1/Tính A=\(0,5^3+1^3+1,5^3+...+5^3\)
biết \(1^3+2^3+3^3+...+10^3=3025\)
2/Tính:
\(\left(\frac{16}{3}-\sqrt{\frac{40}{9}}^{^0}\right)\left(\frac{17}{3}-\sqrt{\frac{40}{9}}^0\right)...\left(\frac{30}{3}-\sqrt{\frac{40}{9}}^0\right)\)
Tính giá trị của biểu thức \(M=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{121\sqrt{120}+120\sqrt{121}}\)
Với \(k\in N;k\ne0\) ta có :
\(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{\left(k+1\right)}}=\frac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k}+\sqrt{k+1}\right)}\)
\(=\frac{\sqrt{k+1}+\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)\left(\sqrt{k+1}+\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}\)
\(=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Áp dụng ta có :
\(M=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}=\frac{10}{11}\)
Tính các tổng
a. \(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+....+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
b. \(B=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{121\sqrt{120}+120\sqrt{121}}\)
Mọi người giúp tớ với nhé!! Cảm ơn trước nha!!
a) Trục căn thức ở mỗi số hạng của biểu thức A,ta có:
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)=\(\frac{\sqrt{2}+\sqrt{1}}{1-2}-\frac{\sqrt{3}+\sqrt{2}}{2-3}+\frac{\sqrt{3}+\sqrt{4}}{3-4}-...+\frac{\sqrt{2007}+\sqrt{2008}}{2007-2008}\)
= \(-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2007}+\sqrt{2008}\right)\)
=\(-1-\sqrt{2008}\)
b)Ta xét số hạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào biểu thức B ta được:
B= \(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}\)= \(\frac{10}{11}\)
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
\(=\frac{-1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{1}{\sqrt{4}-\sqrt{3}}+\frac{1}{\sqrt{5}-\sqrt{4}}-....+\frac{1}{\sqrt{2007}-\sqrt{2006}}-\frac{1}{\sqrt{2008}-\sqrt{2007}}\)
\(=\frac{-1\cdot\left(\sqrt{2}+\sqrt{1}\right)}{2-1}+\frac{1\cdot\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\frac{1\cdot\left(\sqrt{4}+\sqrt{3}\right)}{4-3}+\frac{1\cdot\left(\sqrt{5}+\sqrt{4}\right)}{5-4}-...+\frac{1\cdot\left(\sqrt{2007}+\sqrt{2006}\right)}{2007-2006}-\frac{1 \left(\sqrt{2008}+\sqrt{2007}\right)}{2008-2007}\)
\(=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-...+\sqrt{2006}+\sqrt{2007}-\sqrt{2007}-\sqrt{2008}\)
\(=-1-\sqrt{2008}\)
Tính
a,\(\frac{2^{10}\cdot55+2^{10}\cdot26}{2^8\cdot27}\)
b,120:{300:[150-(2.53-23.25)]}
c,\(\left[\left(\frac{40}{130}-\frac{12}{13}\right)\cdot40\%+0,15\right]:\frac{-5}{52}\)
d,\(\frac{0,8:\left(\frac{4}{5}\cdot1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(1,08-\frac{2}{25}\right):\frac{4}{7}}{\left(6\frac{5}{9}-3\frac{1}{4}\right)\cdot2\frac{2}{17}}+\left(1,2+0,5\right):\frac{1}{5}\)
Tính nhanh
a)\(\frac{120-\left(-0,5\right).\left(-40\right).\left(-5\right).\left(-0,2\right).20.0,25}{5+10+15+...+1995}\)
b)\(\frac{5.18-10.27+15.36}{10.36-20.54+30.72}\)
c)\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{1999}-1\right)\)
\(\frac{5.18-10.27+15.36}{10.36-20.54+30.72}\)
\(=\frac{5.18-10.27+15.36}{5.2.18.2-10.2.27.2+15.2.36.2}\)
\(=\frac{5.18-10.27+15.36}{5.8.2.2-10.27.2.2+15.36.2.2}\)
\(=\frac{1}{2.2-2.2+2.2}\)
\(=\frac{1}{2.2}=\frac{1}{4}\)
Giúp mik với
trước 5h nha
a) \(\frac{120-\left(-0,5\right).\left(-40\right).\left(-5\right).\left(-0,2\right).20.0,25}{5+10+15+...+1995}\)
\(=\frac{120-\left[\left(-0,5\right).\left(-0,2\right)\right].\left[\left(-40\right).0,25\right].\left[\left(-5\right).\left(20\right)\right]}{\left(1995+5\right).\left[\left(1995-5\right)\div5+1\right]\div2}\)
\(=\frac{120-0,1.\left(-10\right).\left(-100\right)}{2000.399\div2}\)
\(=\frac{120-100}{1000.399}\)
\(=\frac{1}{19950}\)
b) \(\frac{5.18-10.27+15.36}{10.36-20.54+30.72}\)
\(=\frac{5.18-2.5.27+3.5.36}{10.2.18-20.2.27+5.2.3.2.36}\)
\(=\frac{5.18-2.5.27+3.5.36}{20.18-20.2.27+20.3.36}\)
\(=\frac{5.\left(18-2.27+3.36\right)}{20.\left(18-2.27+3.36\right)}\)
\(=\frac{1}{4}\)
c) \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{1999}-1\right)\)
\(=\left(\frac{-1}{2}\right).\left(\frac{-2}{3}\right).\left(\frac{-3}{4}\right)...\left(\frac{-1998}{1999}\right)\)
\(=\frac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-1998\right)}{2.3.4...1999}\)
\(=\frac{\left(-1\right).\left(-1\right).\left(-1\right)...\left(-1\right)}{1.1.1...1999}\)
Ta có : 1998 số (-1) mà 1998 là số chẵn
Vậy tích của 1998 số (-1) = 1
\(\Rightarrow\frac{\left(-1\right).\left(-1\right).\left(-1\right)...\left(-1\right)}{1.1.1...1999}\)
\(=\frac{1}{1999}\)
\(\frac{120^3}{40^3}\)
\(\frac{120^3}{40^3}=\left(\frac{120}{40}\right)^3=3^3=27\)
Tính giá trị biểu thức:
\(\text{a) }\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{2010}+\sqrt{2011}}\)
\(\text{b) }\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{121\sqrt{120}+120\sqrt{121}}\)
\(\text{c) }\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...\sqrt{+1+\frac{1}{2010^2}+\frac{1}{2011^2}}\)