phan tich da thuc thanh nhan tu B=\(\left(x^2-y^2+1\right)^3-x^6-y^6-1\)
phan tich da thuc thanh nhan tu
\(\left(x^2-y^2+1\right)^3-x^6-y^6-1\)
phan tich da thuc thanh nhan tu
\(\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)\)
(x -y)3 - 1 - 3(x -y)(x - y - 1)
= (x -y)3 - 3(x -y)(x - y - 1) - 1
Đặt x - y = t, khi đó ta có:
t3 - 3t. (t - 1) - 1
= t3 - 3t2 + 3t - 1
= (t - 1)3
Thay t = x - y vào (t - 1)3 , ta có: ( x - y - 1)3
Vậy (x -y)3 - 1 - 3(x -y)(x - y - 1) = ( x - y - 1)3
phan tich da thuc sau thanh nhan tu :
\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
Ta có (x^2 + y^2 )^3 + (z^2 – x^2 )^3 – (y^2 + z^2 )^3
= (x^2 + y^2 )^3 + (z^2 – x^2 )^3 + (-y^2 - z^2 )^3
Ta thấy x^2 + y^2 + z^2 – x^2 – y^2 – z^2 = 0
=> áp dụng nhận xét ta có: (x^2+y^2 )^3+ (z^2 -x^2 )^3 -y^2 -z^2 )^3
= 3(x^2 + y^2 ) (z^2 –x^2 ) (-y^2 – z^2 )
= 3(x^2+y^2 ) (x+z)(x-z)(y^2+z^2 )
Phan tich da thuc thanh nhan tu:
x^3 - x + 3x^2y + 3xy^2 + y^3 - y
x^2 + 5x - 6
x^3 - x + 3x^2y + 3xy^2 + y^3 - y
=x3+y3+3x2y+3xy2-x-y
=(x+y)(x2-xy+y2)+3xy(x+y)-(x+y)
=(x+y)(x2-xy+y2+3xy-1)
=(x+y)(x2+2xy+y2-1)
=(x+y)[(x+y)2-1]
=(x+y)(x+y-1)(x+y+1)
x^2 + 5x - 6
=x2-x+6x-6
=x.(x-1)+6.(x-1)
=(x-1)(x+6)
phan tich da thuc thanh nhan tu :
x^2 +2x +1 - y^2
x^2 - 3x +2
x^2 +x -6
phan tich da thuc thanh nhan tu ;
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=\left(x-y\right)\left[3\left(x+y\right)-2\left(x-y\right)\right]\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
phan tich cac da thuc sau thanh nhan tu:
(y^2+Y)^2 -9y^2 - 9y+20
(X+3)*(x+6)*(x+9)*(x+12)+81
dat y^2+y=z cho gon
\(z^2-9z+20=z^2-4z-5z+20=z\left(z-4\right)-5\left(z-4\right)=\left(z-4\right)\left(z-5\right)\)
\(thaylai:\left(y^2+y-4\right)\left(y^2+y-5\right)\)
phan tich da thuc thanh nhan tu
x^6+y^6+z^6
Phan tich da thuc thanh nhan tu x^2*[(x^2+1/x^2)+6*(x-1/x)+7]