Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VanCan
Xem chi tiết
Hoàng Lê Bảo Ngọc
26 tháng 5 2016 lúc 0:23

Ta có : \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}=1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\)

\(\Rightarrow\left(1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\right)^2\le\left(1^2+1^2+1^2\right)\left(x+y+y+z+z+x\right)=3.2\left(x+y+z\right)=18\)

(Áp dụng bất đẳng thức Bunhiacopxki)

Vậy : Max P = \(3\sqrt{2}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\\sqrt{x+y}=\sqrt{y+z}=\sqrt{z+x}\end{cases}\Leftrightarrow x=y=z=1}\)

Oo Gajeel Redfox oO
25 tháng 5 2016 lúc 23:36

áp dụng bất đẳng thức Cô-si cho 2 số dương, ta có:

\(\sqrt{x+y}\)< hoặc =\(\frac{x+y}{2}\)

\(\sqrt{y+z}\)< hoặc =\(\frac{y+z}{2}\)

\(\sqrt{x+z}\)< hoặc =\(\frac{x+z}{2}\)

=>\(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\)< hoặc =\(\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z=3\)

dấu = xảy ra<=>x=y=z

Vậy GTLN của biểu thúc là 3 khi x=y=z

chu hồng giang
Xem chi tiết
chuong
Xem chi tiết
 ღ ๖ۣۜBFF  ๖ۣۜNhi  ღ
1 tháng 7 2019 lúc 14:03

thế này đúng ko bạn ?

\(x+1+\sqrt{x^2+4x+1}=3\sqrt{x}\)

Đỗ Thị Thùy
Xem chi tiết
Ánh Lê
9 tháng 2 2019 lúc 13:29

\(B=7-2\sqrt{x-1}\), với \(x\ge1\)

Ta có \(2\sqrt{x-1}\ge0\)

\(\Rightarrow7-2\sqrt{x-1}\le7\)

=> B đạt giá trị lớn nhất bằng 7

\(\Leftrightarrow2\sqrt{x-1}=0\)

\(\Rightarrow\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)

Vậy GTLN của B = 7 \(\Leftrightarrow\)x=1

Ngoc Vu Thi
Xem chi tiết
Vu Thi Ngoc
Xem chi tiết
anh chang thong thai
Xem chi tiết
Akai Haruma
20 tháng 7 lúc 22:58

Lời giải:

\(P=\sqrt{3+2x-x^2}=\sqrt{4-(x^2-2x+1)}=\sqrt{4-(x-1)^2}\)

Vì $(x-1)^2\geq 0$ với mọi $x$ nên $4-(x-1)^2\leq 4$

$\Rightarrow P\leq \sqrt{4}=2$
Vậy $P_{\max}=2$

Giá trị này đạt được tại $x-1=0\Leftrightarrow x=1$

van anh tran
Xem chi tiết
Thieu Gia Ho Hoang
14 tháng 2 2016 lúc 15:10

bai toan nay khó

Nguyễn Thanh Hải
14 tháng 2 2016 lúc 15:17

kho qua ban a ! goi may nguoi nhu miuti ,tieu thu ho nguyen,mokona,cong chua gia bang,cong tu ho nguyen,v......v....... may ban day gioi lam . Gioi den ko ta noi !

Hiếu Phạm Chung
Xem chi tiết
Phạm Tiến
6 tháng 1 2017 lúc 19:35

Ôn tập toán 7

Đinh Quỳnh Vân Khánh
5 tháng 10 2020 lúc 20:31

đùa à pạn?leuleu

Khách vãng lai đã xóa