Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Anh Tuấn
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
Phạm Thị Thùy Linh
6 tháng 6 2019 lúc 20:18

\(b,\sqrt{\frac{2x-1}{x+3}}\)

\(Đk:\)\(x+3\ne0\Rightarrow x\ne-3\)

Và \(\frac{2x-1}{x+3}\ge0\)

Khi \(\frac{2x-1}{x+3}=0\Rightarrow2x-1=0\)

\(\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)

Khi \(\frac{2x-1}{x+3}>0\)\(\Rightarrow\orbr{\begin{cases}2x-1>0;x+3>0\\2x-1< 0;x+3< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2};x>-3\\x< \frac{1}{2};x< -3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x< -3\end{cases}}\)

Vậy căn thức xác định khi \(x\ge\frac{1}{2};x< -3\)

Phạm Tiến	Dũng
Xem chi tiết
Nguyễn Huy Tú
10 tháng 8 2021 lúc 16:41

Bài 1 : Với : \(x>0;x\ne1\)

\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)

Thay vào ta được : \(P=x=25\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
10 tháng 8 2021 lúc 16:43

Bài 2 : 

a, Với \(x\ge0;x\ne1\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)

\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
10 tháng 8 2021 lúc 16:45

Bài 3 : \(x\ge0;x\ne1\)

\(P=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\)

\(=\left(\frac{2+\sqrt{x}}{x-1}\right).\left(\sqrt{x}+1\right)=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

b, Ta có : \(P=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{5}{4}\Rightarrow4\sqrt{x}+8=5\sqrt{x}-5\)

\(\Leftrightarrow\sqrt{x}=13\Leftrightarrow x=169\)(tmđk )

Khách vãng lai đã xóa
Trần Nguyên Sơn
Xem chi tiết
NguyenHa ThaoLinh
Xem chi tiết
Nguyễn Tấn Phát
7 tháng 6 2019 lúc 14:24

1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)

\(\Leftrightarrow2x-1>0\)

\(\Leftrightarrow x>\frac{1}{2}\)

\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)

Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)

2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)

Vậy \(ĐKXĐ:x\ge1\)

3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)

\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)

Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)

4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)

\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)

Vậy \(ĐKXĐ:1\le x\le3\)

Chuột yêu Gạo
Xem chi tiết
Akai Haruma
17 tháng 6 2019 lúc 18:55

Lời giải:

a) ĐKXĐ: \(x^2-x+1>0\)

\(\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}>0\)

\(\Leftrightarrow x\in\mathbb{R}\)

b)

ĐKXĐ: \(\left\{\begin{matrix} x-\sqrt{2x-1}>0\\ 2x-1\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{(2x-1)-2\sqrt{2x-1}+1}{2}>0\\ 2x-1\geq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{(\sqrt{2x-1}-1)^2}{2}>0\\ 2x-1\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \sqrt{2x-1}\neq 1\\ 2x-1\geq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\neq 1\\ x\geq \frac{1}{2}\end{matrix}\right.\)

Nguyễn Thanh Thảo
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
Phạm Thị Thùy Linh
18 tháng 6 2019 lúc 9:59

\(a,\)\(\frac{1}{1-\sqrt{x^2-3}}\)

\(đkxđ\Leftrightarrow\orbr{\begin{cases}x^2-3\ge0\\x^2-3\ne1\end{cases}}\).

\(x^2-3\ne1\)\(\Rightarrow x^2\ne4\)\(\Rightarrow x\ne\pm2\)

\(x^2-3\ge0\)\(\Rightarrow\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\ge0\)

Chia trường hợp ra làm nốt nhé 

....

Phạm Thị Thùy Linh
18 tháng 6 2019 lúc 10:06

\(b,\)\(\frac{x-1}{2-\sqrt{3x+1}}\)

\(đkxđ\Leftrightarrow\orbr{\begin{cases}3x+1\ge0\\\sqrt{3x+1}\ne2\end{cases}}\)

\(3x+1\ge0\)\(\Rightarrow3x\ge-1\)

\(\Rightarrow x\ge\frac{-1}{3}\)

\(\sqrt{3x+1}\ne2\)\(\Rightarrow|3x+1|\ne4\)\(\Rightarrow\hept{\begin{cases}3x-1\ne4\\3x-1\ne-4\end{cases}\Rightarrow\hept{\begin{cases}3x\ne5\\3x\ne-3\end{cases}\Rightarrow}\hept{\begin{cases}x\ne\frac{5}{3}\\x\ne-1\end{cases}}}\)

\(\Rightarrow x\ge-\frac{1}{3}\)và \(x\ne\frac{5}{3}\)

Lục Vân Ca
Xem chi tiết
_Guiltykamikk_
11 tháng 8 2018 lúc 4:20

\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)\(\left(ĐKXĐ:x\ne4\right)\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

b) Với  \(x=3\)( thỏa mãn ĐKXĐ ) ta có  \(P=\frac{3\sqrt{3}}{\sqrt{3}+2}=-9+6\sqrt{3}\)

c) A ở đâu ???? '-'