\(\sqrt[3]{3x^2-x+2012}-\sqrt[3]{3x^2-6x-2013}-\sqrt[3]{5x-2014}=\sqrt[3]{2013}\)
\(\sqrt[3]{3x^2-x+2012}-\sqrt[3]{3x^2-6x-2013}-\sqrt[3]{5x-2014}=\sqrt[3]{2013}\)
Sửa đề:
\(\sqrt[3]{3x^2-x+2012}-\sqrt[3]{3x^2-6x+2013}-\sqrt[5]{5x-2014}=\sqrt[3]{2013}\)
Đặt \(\sqrt[3]{3x^2-x+2012}=a;\sqrt[3]{3x^2-6x+2013}=b;\sqrt[5]{5x-2014}=c\)
\(\Rightarrow a-b-c=\sqrt[3]{2013}\)
Ta lại có:
\(a^3-b^3-c^3=2013=\left(a-b-c\right)^3\)
\(\Leftrightarrow\left(a-b\right)\left(a-c\right)\left(b+c\right)=0\)
Làm nốt
Tìm x thỏa mãn: \(\sqrt[3]{3x^2-x+2011}-\sqrt[3]{3x^2-7x+2012}-\sqrt[3]{6x-2013}=\sqrt[3]{2012}\)
Lm Giúp mk vs mai mk có toán oy ....... Thak Trc na.....hihihi ... :) :) :) :v :v
Câu 1, Giải phương trình : \(\sqrt[3]{3x^2-x+2012}-\sqrt{3x^2-6x+2013}-\sqrt{5x-2014}=\sqrt{2013}\)
Câu 2, Giải hệ phương trình : \(\left\{\begin{matrix}\dfrac{30y}{x^2}+4y=2012\\\dfrac{30z}{y^2}+4z=2012\\\dfrac{30x}{z^2}+4x=2012\end{matrix}\right.\)
câu 1 đề sai hay vô nghiệm ko bt
câu 2: pt thứ 2 thiếu
Tìm giá trị của biểu thức: x\(^{2012}+2x^{2013}+3x^{2014}\)
Với x = \(\dfrac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
\(x=\dfrac{\sqrt{\sqrt{5}-2}\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)}{\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+1\right)}}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(x=\dfrac{1+\sqrt{5}-2}{\sqrt{3-\sqrt{5}}}-\left(\sqrt{2}-1\right)=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{6-2\sqrt{5}}}-\left(\sqrt{2}-1\right)\)
\(x=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{\left(\sqrt{5}-1\right)^2}}-\sqrt{2}+1=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\sqrt{2}+1=1\)
\(\Rightarrow x^{2012}+2x^{2013}+3x^{2014}=1^{2012}+2.1^{2013}+3.1^{2014}=6\)
Giải Pt :
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{x\left(x+1\right)}=\frac{\sqrt{2012-x}+2012}{\sqrt{2012-x}+2013}\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
b) \(\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)+5=3x+2\left(\sqrt{2x^2+5x+3}-6\right)+12-16\)
\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=3\left(x-3\right)+2\left(\sqrt{2x^2+5x+3}-6\right)\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}-3\left(x-3\right)-\frac{2\left(x-3\right)\left(2x+11\right)}{\sqrt{2x^2+5x+3}+6}=0\Leftrightarrow x-3=0\Leftrightarrow x=3.\)
Giải phương trình, hệ phương trình:
a) \(\frac{\sqrt{x-2013}-1}{x-2013}+\frac{\sqrt{y-2014}-1}{y-2014}+\frac{\sqrt{z-2015}-1}{z-2015}=\frac{3}{4}\)
b) \(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
c)\(\sqrt{x^2-3x+2}+\sqrt{x-3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
d)\(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)
c/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x>2013\\y>2014\\z>2015\end{matrix}\right.\)
\(\Leftrightarrow\frac{1}{4}-\frac{\sqrt{x-2013}-1}{x-2013}+\frac{1}{4}-\frac{\sqrt{y-2014}-1}{y-2014}+\frac{1}{4}-\frac{\sqrt{z-2015}-1}{z-2015}=0\)
\(\Leftrightarrow\frac{x-2013-4\sqrt{x-2013}+4}{4\left(x-2013\right)}+\frac{y-2014-4\sqrt{y-2014}+4}{4\left(y-2014\right)}+\frac{z-2015-4\sqrt{z-2015}+4}{4\left(z-2015\right)}=0\)
\(\Leftrightarrow\left(\frac{\sqrt{x-2013}-2}{2\sqrt{x-2013}}\right)^2+\left(\frac{\sqrt{y-2014}-2}{2\sqrt{y-2014}}\right)^2+\left(\frac{\sqrt{z-2015}-2}{2\sqrt{z-2015}}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2013}-2=0\\\sqrt{y-2014}-2=0\\\sqrt{z-2015}-2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)
b/ Trừ vế cho vế 2 pt ta được:
\(x^3-y^3=2\left(y-x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-xy\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-xy+2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}+2\right]=0\)
\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Thay vào pt đầu:
\(x^3+1=2x\Leftrightarrow x^3-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow...\)
3x2013+5x2011+2006 với x=\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}-\sqrt{3}\)
Cho \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2.\left(\sqrt{3}+1\right)}}\). Tính: \(A=\dfrac{4.\left(x+1\right).x^{2013}-2.x^{2012}+2x+1}{2x^2+3x}\)
Giải phương trình:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{3}{4}\)
Điều kiện: \(x\ge2012;y\ge2013;z\ge2014\)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\left\{{}\begin{matrix}\dfrac{\sqrt{x-2012}-1}{x-2012}=\dfrac{\sqrt{4\left(x-2012\right)}-2}{2\left(x-2012\right)}\le\dfrac{\dfrac{4+x-2012}{2}-2}{2\left(x-2012\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{y-2013}-1}{y-2013}=\dfrac{\sqrt{4\left(y-2013\right)}-2}{2\left(y-2013\right)}\le\dfrac{\dfrac{4+y-2013}{2}-2}{2\left(y-2013\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{\sqrt{4\left(z-2014\right)}-2}{2\left(z-2014\right)}\le\dfrac{\dfrac{4+z-2014}{2}-2}{2\left(z-2014\right)}=\dfrac{1}{4}\end{matrix}\right.\)
Cộng vế theo vế, ta được:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=2016;y=2017;z=2018\)
Vậy....