Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ha giang
Xem chi tiết
Vũ Huy Hoàng
12 tháng 6 2019 lúc 17:20

c) ΔFNA~ΔFDC => \(\frac{S_{FNA}}{S_{FDC}}=\frac{AN^2}{DC^2}\) (1)

ΔAMC~ΔFDC => \(\frac{S_{AMC}}{S_{FDC}}=\frac{MC^2}{DC^2}\) (2)

Ta cũng có AN = DM (3)

Từ (1), (2) và (3) ta có : \(S^2_{FDC}=\frac{S_{FNA}.S_{AMC}.CD^4}{MD^2.MC^2}=S_{FNA}.S_{AMC}.\frac{\left(MD+MC\right)^4}{MD^2.MC^2}\)

\(\ge16.S_{FNA}.S_{AMC}\) (Áp dụng BĐT Cauchy)

~ Học tốt nha bạn ~

Dung Hoàng Dung
11 tháng 6 2019 lúc 9:42

đề bài có sai ko bn?

du minh ngoc
Xem chi tiết
nguyễn trường sinh
21 tháng 4 2017 lúc 11:12

a) VÌ DE//BC 

SUY RA \(\frac{DN}{BM}=\frac{AN}{AM}\)VÀ \(\frac{NE}{MC}=\frac{AN}{AM}\)\(\Rightarrow\frac{DN}{BM}=\frac{NE}{MC}\)mà BM=MC(m là trung diểm) nên DN=NE

b) dễ thấy \(\frac{KN}{KC}=\frac{DN}{BC}\)\(\frac{SN}{SB}=\frac{NE}{BC}\)mà \(\frac{DN}{BC}=\frac{NE}{BC}\)(NE=DN)

\(\Rightarrow\frac{KN}{KC}=\frac{SN}{SB}\)áp dụng định lí talet ta suy ra KS//BC

Nguyễn Mạnh Hùng
Xem chi tiết
quynh anh
Xem chi tiết
Phạm Thị Thúy Nga
Xem chi tiết
Điền Nguyễn Vy Anh
Xem chi tiết
Nguyễn Phương Uyên
4 tháng 2 2020 lúc 16:27

C B M F N A I E O K T

b, kẻ AO // BC

góc OAK so le trong KFB 

=> góc OAK = góc KFB (tc)

xét tam giác AOK và tam giác BMK có : AK = KM (do ...)

góc AKO = góc MBK (đối đỉnh)

=> tam giác AOK = tam giác BMK (g-c-g)= 

=> AO = MB (đn)

có AO // BC mà góc EOA đồng vị EMC 

=> góc EOA = góc EMC (tc)    (1)

gọi EF cắt tia phân giác của góc BCA tại T 

EF _|_ CT (gt)

=> tam giác ETC vuông tại T và tam giác CTF vuông tại T 

=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM 

có có TCM = góc ECT do CT là phân giác của góc ACB (gt)

=> góc CET = góc TMC   và (1)

=> góc  AEO = góc AOE 

=> tam giác AEO cân tại A (tc)

=> AE = AO mà AO = BM 

=> AE = BM

Khách vãng lai đã xóa
Nguyễn Phương Uyên
4 tháng 2 2020 lúc 16:05

a, MB = MN (gt)

M nằm giữa N và B

=> M là trung điểm của NP (đn)

NI // AB (gt); xét tam giác ANB 

=> I là trung điểm của AN (đl)

b, 

Khách vãng lai đã xóa
Điền Nguyễn Vy Anh
4 tháng 2 2020 lúc 16:33

câu a là sao vậy bn???

Khách vãng lai đã xóa
Phạm Trung Nguyên
Xem chi tiết
Hoàng Ninh
Xem chi tiết
Trí Tiên亗
17 tháng 2 2020 lúc 9:47

A B C D E K G a

Lần lượt áp dụng định lý Talet trong các \(\Delta BCD,\Delta ABC,\Delta BEC\) ta có :

+) \(\Delta BCD:\hept{\begin{cases}KA//BC\\K\in DC,A\in BD\end{cases}}\)  \(\Rightarrow\frac{AK}{BC}=\frac{AD}{BD}\) (1)

+) \(\Delta ABC:\hept{\begin{cases}DE//BC\\D\in AB,E\in AC\end{cases}}\)  \(\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}\) (2)

+) \(\Delta BEC:\hept{\begin{cases}AG//BC\\A\in EC,G\in BE\end{cases}}\) \(\Rightarrow\frac{AG}{BC}=\frac{AE}{EC}\) (3)

Từ (1), (2) và (3) \(\Rightarrow\frac{AK}{BC}=\frac{AG}{BC}\) \(\Rightarrow AK=AG\) mà\(A\in KG\left(A\in a\right)\)

\(\Rightarrow A\) là trung điểm của \(KG\) (đpcm)

Khách vãng lai đã xóa
Nguyễn Linh Chi
17 tháng 2 2020 lúc 9:41

A B C D E K G

Ta có: 

+) AG // BC => \(\frac{AG}{BC}=\frac{AE}{AC}\)

+) AK//BC => \(\frac{AK}{BC}=\frac{AD}{BD}\)

+) DE//AC => \(\frac{AD}{DB}=\frac{AE}{EC}\)

Từ 3 điều trên => \(\frac{AG}{BC}=\frac{AK}{BC}\)=> AG = AK 

Mặt khác A, K, G thẳng hàng

=> A là trung điểm KG

Khách vãng lai đã xóa
Quỳnh Trang Vũ
Xem chi tiết
Khanh Hoa
Xem chi tiết