Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN MINH TÀI
Xem chi tiết
 Mashiro Shiina
18 tháng 6 2018 lúc 12:29

NGUYỄN MINH TÀI Ok bí thì cx đừng gắt,t giải đoạn đó cho

\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

\(VT=\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)

\(=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\)

\(\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)

\("="\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(3-\sqrt{x-1}\right)\ge0\)

\(\Leftrightarrow2\le\sqrt{x-1}\le3\Leftrightarrow4\le x-1\le9\)

\(\Leftrightarrow5\le x\le10\)

DƯƠNG PHAN KHÁNH DƯƠNG
18 tháng 6 2018 lúc 10:45

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)}^2+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

Làm nốt nhé :v

Vân Bùi
Xem chi tiết
vũ tiền châu
14 tháng 7 2018 lúc 16:43

b) Ta có pt \(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

<=>  \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\Leftrightarrow\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|=1\)

Mà \(\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|\ge\left|3-\sqrt{x-1}+\sqrt{x-1}-2\right|=1\)

...

vũ tiền châu
14 tháng 7 2018 lúc 16:44

a) Đặt \(\sqrt{x^2-4x-5}=a\left(a\ge0\right)\)

Ta có pt \(\Leftrightarrow2a^2-3a-2=0\Leftrightarrow\left(a-2\right)\left(2a+1\right)=0\)

...

Vân Bùi
14 tháng 7 2018 lúc 20:24

mình không hiểu gì hết bạn ơi

Hoàng Hồng Nhung
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 5 2019 lúc 22:29

Câu 1:

\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)

- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) pt vô nghiệm

- Nhận thấy \(x=-1\) là 1 nghiệm

- Nếu \(x>-1\) kết hợp ĐKXĐ các căn thức ta được \(x\ge1\), pt tương đương:

\(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow2x+6+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4x+4\)

\(\Leftrightarrow2\sqrt{2x^2+4x-6}=x-1\)

\(\Leftrightarrow4\left(2x^2+4x-6\right)=\left(x-1\right)^2\)

\(\Leftrightarrow7x^2+18x-25=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{25}{7}< 0\left(l\right)\end{matrix}\right.\)

Vậy pt có nghiệm \(x=\pm1\)

Câu 2:

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=2\)

- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\) pt trở thành:

\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\Leftrightarrow2=2\) (luôn đúng)

- Nếu \(1\le x< 2\) pt trở thành:

\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\Leftrightarrow x=2\left(l\right)\)

Vậy nghiệm của pt là \(x\ge2\)

Nguyễn Việt Lâm
19 tháng 5 2019 lúc 22:54

Câu 3:

Bình phương 2 vế ta được:

\(2x^2+2x+5+2\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2x^2+2x+9\)

\(\Leftrightarrow\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2\)

\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x+1\right)=4\)

Đặt \(x^2+x+1=a>0\) pt trở thành:

\(a\left(a+3\right)=4\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Câu 5:

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

\(VT=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)

\(\Rightarrow VT\ge VP\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\le0\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)

Vậy nghiệm của pt là \(5\le x\le10\)

ha thi thuy
Xem chi tiết
Trần Quốc Lộc
9 tháng 9 2018 lúc 16:13

\(\text{a) }\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\\ \Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\\ \Leftrightarrow\sqrt{\left(2x-1\right)+2\sqrt{2x-1}+1}+\sqrt{\left(2x-1\right)-2\sqrt{2x-1}+1}=2\\ \Leftrightarrow\sqrt{2x-1}+1+\left|\sqrt{2x-1}-1\right|=2\)

Với \(x\ge1\Leftrightarrow\sqrt{2x-1}+1+\left|\sqrt{2x-1}-1\right|=2\)

\(\Leftrightarrow\sqrt{2x-1}+1+\sqrt{2x-1}-1=2\\ \Leftrightarrow2\sqrt{2x-1}=2\\ \Leftrightarrow2x-1=1\\ \Leftrightarrow x=1\left(T/m\right)\)

Với \(x< 1\Leftrightarrow\sqrt{2x-1}+1+1-\sqrt{2x-1}=2\)

\(\Leftrightarrow0x=0\left(Nghiệm\text{ }đúng\text{ }\forall x\right)\\ \Leftrightarrow x< 1\)

Vậy pt có nghiệm \(x\le1\)

Trịnh Minh Tuấn
Xem chi tiết
Lấp La Lấp Lánh
19 tháng 9 2021 lúc 12:20

1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)

\(\Leftrightarrow5-2x=36\)

\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)

2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)

\(\Leftrightarrow2-x=x+1\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)

\(\Leftrightarrow\left|x-5\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

Dương Thị Thu Hiền
Xem chi tiết
Trúc Giang
28 tháng 11 2021 lúc 17:41

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 15:46

a/ ĐKXĐ: ...

\(\Leftrightarrow x+8+\sqrt{x+8}-\left(x+8\right)=\sqrt{x}+\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{x+8}=\sqrt{x}+\sqrt{x+3}\)

\(\Leftrightarrow x+8=2x+3+2\sqrt{x^2+3x}\)

\(\Leftrightarrow5-x=2\sqrt{x^2+3x}\) (\(x\le5\))

\(\Leftrightarrow x^2-10x+25=4\left(x^2+3x\right)\)

\(\Leftrightarrow...\)

b/ ĐKXĐ: \(2\le x\le5\)

\(\Leftrightarrow2\left(x-2\right)+\sqrt{2\left(x-2\right)}\left(\sqrt{5-x}-\sqrt{3x-3}\right)=0\)

\(\Leftrightarrow\sqrt{2\left(x-2\right)}\left(\sqrt{2x-4}+\sqrt{5-x}-\sqrt{3x-3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\sqrt{2x-4}+\sqrt{5-x}=\sqrt{3x-3}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}=3x-3\)

\(\Leftrightarrow\sqrt{\left(2x-4\right)\left(5-x\right)}=x-2\)

\(\Leftrightarrow\left(2x-4\right)\left(5-x\right)=\left(x-2\right)^2\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 15:50

c/ ĐKXĐ: \(x\le12\)

\(\Leftrightarrow\sqrt[3]{24+x}\sqrt{12-x}-6\sqrt{12-x}+12-x=0\)

\(\Leftrightarrow\sqrt{12-x}\left(\sqrt[3]{24+x}-6+\sqrt{12-x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=12\\\sqrt[3]{24+x}+\sqrt{12-x}=6\left(1\right)\end{matrix}\right.\)

Xét (1):

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\a^3+b^2=36\end{matrix}\right.\)

\(\Leftrightarrow a^3+\left(6-a\right)^2=36\)

\(\Leftrightarrow a^3+a^2-12a=0\)

\(\Leftrightarrow a\left(a^2+a-12\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=3\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{24+x}=0\\\sqrt[3]{24+x}=3\\\sqrt[3]{24+x}=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}24+x=0\\24+x=27\\24+x=-64\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 15:58

d/ ĐKXĐ: \(x\le\frac{3}{2}\) ; \(x\ne\frac{3}{8};x\ne-\frac{13}{24}\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2\sqrt{3-2x}-3}-\frac{1}{3-2\sqrt[3]{5+3x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\frac{1}{2\sqrt{3-2x}-3}=\frac{1}{3-2\sqrt[3]{5+3x}}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{3-2x}-3=3-2\sqrt[3]{5+3x}\)

\(\Leftrightarrow\sqrt[3]{5+3x}+\sqrt{3-2x}=3\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{5+3x}=a\\\sqrt{3-2x}=b\ge0\end{matrix}\right.\) ta được:

\(\left\{{}\begin{matrix}a+b=3\\2a^3+3b^2=19\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=3-a\\2a^3+3b^2=19\end{matrix}\right.\)

\(\Leftrightarrow2a^3+3\left(3-a\right)^2=19\)

\(\Leftrightarrow2a^3+3a^2-18a+8=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-4\\a=\frac{1}{2}\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{5+3x}=-4\\\sqrt[3]{5+3x}=\frac{1}{2}\\\sqrt[3]{5+3x}=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}5+3x=-64\\5+3x=\frac{1}{8}\\5+3x=8\end{matrix}\right.\)

Khách vãng lai đã xóa
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 21:59

a/ ĐKXĐ: \(x\ge1\)

Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm

b/ \(x\ge1\)

\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=a\ge0\) ta được:

\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)

- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)

- Với \(0\le a\le1\) ta được:

\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)

- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:03

c/ ĐKXĐ: \(x\ge\frac{49}{14}\)

\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)

\(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(7-\sqrt{14x-49}\ge0\)

\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)

Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:13

d/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|-2\left|\sqrt{2x-1}-2\right|+3\left|\sqrt{2x-1}-3\right|=4\)

TH1: \(\sqrt{2x-1}\ge3\Rightarrow x\ge5\)

\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\sqrt{2x-1}-9=4\)

\(\Leftrightarrow\sqrt{2x-1}=5\)

\(\Leftrightarrow x=13\)

TH2: \(2\le\sqrt{2x-1}< 3\Rightarrow\frac{5}{2}\le x< 5\)

\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow\sqrt{2x-1}=2\Rightarrow x=\frac{5}{2}\)

TH3: \(1\le\sqrt{2x-1}< 2\Rightarrow1\le x< \frac{5}{2}\)

\(\sqrt{2x-1}-1-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow4=4\) (luôn đúng)

TH4: \(\frac{1}{2}\le x< 1\)

\(1-\sqrt{2x-1}-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow\sqrt{2x-1}=1\Rightarrow x=1\left(l\right)\)

Vậy nghiệm của pt là: \(\left[{}\begin{matrix}1\le x\le\frac{5}{2}\\x=13\end{matrix}\right.\)

Khách vãng lai đã xóa
WW
Xem chi tiết