Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiếu Cao Huy
Xem chi tiết
Phạm Quốc Đạt
4 tháng 4 2017 lúc 21:12

k biết

Hiếu Cao Huy
4 tháng 4 2017 lúc 21:16

tốt ghê ha

nếu vậy thì đừng trả lời

Thắng Nguyễn
4 tháng 4 2017 lúc 21:52

99,(9)% sai đề

Hiếu Cao Huy
Xem chi tiết
Lightning Farron
4 tháng 4 2017 lúc 21:33

đề sai à

Nguyễn Trung Hiếu
Xem chi tiết
ngonhuminh
4 tháng 12 2016 lúc 16:25

\(x-2008=X;y-2009=Y;z-2010=Z\)

\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)

\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)

\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)

\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)

\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)

Bùi Anh Tuấn
Xem chi tiết
nub
18 tháng 8 2020 lúc 15:17

\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)(đk;x>0)

\(\Leftrightarrow x^2+2\sqrt{x}\cdot\sqrt{x^2+1}=8x-1\)

\(\Leftrightarrow\left(x^2+1\right)+2\sqrt{x}\cdot\sqrt{x^2+1}+x=9x\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}\right)^2-9x=0\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}+3\sqrt{x}\right)\left(\sqrt{x^2+1}+\sqrt{x}-3\sqrt{x}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+4\sqrt{x}\right)\left(\sqrt{x^2+1}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\sqrt{x^2+1}-2\sqrt{x}=0\)(vì \(\sqrt{x^2+1}+4\sqrt{x}>0\))

\(\Leftrightarrow x^2-4x+1=0\)

\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=2+\sqrt{3}\end{cases}}\)(thõa mãn điều kiện)

Khách vãng lai đã xóa
nub
18 tháng 8 2020 lúc 15:31

\(\sqrt{x-2009}-\sqrt{y-2008}-\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)(đk:x>2009,y>2008,z>2)

\(\Leftrightarrow\left(\sqrt{x-2009}-1\right)^2+\left(\sqrt{x-2008}+1\right)^2+\left(\sqrt{z-2}+1\right)^2+4014=0\)(không thõa mãn)

Lý do có kết quả trên là vì chuyển 1\2 qua vế trái và tách theo hằng đẳng thức

Bài tiếp theo cũng làm tương tự

Khách vãng lai đã xóa
Ánh trăng cô đơn
Xem chi tiết
Jonh Capricorn
Xem chi tiết
vũ tiền châu
11 tháng 6 2018 lúc 21:19

Ta có pt <=> \(2\sqrt{x-2}+2\sqrt{y+2009}+2\sqrt{z-2010}=x+y+z\)

<=> \(x-2-2\sqrt{x-2}+1+y+2009-2\sqrt{y+2009}+1+z-2010-2\sqrt{z-2010}+1=0\)

<=> \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2009}-1\right)^2+\left(\sqrt{z-2010}-1\right)^2=0\)

...

^_^

công chúa hoa anh đào
11 tháng 7 2018 lúc 10:20

nát cả óc!

Nguyễn Lam Giang
11 tháng 7 2018 lúc 10:31

-kindle (sử dụng ở ứng dụng Android

Nguyễn Võ Anh Nguyên
Xem chi tiết
Nguyễn Trà My
Xem chi tiết
Thắng Nguyễn
3 tháng 4 2016 lúc 11:28

bạn ơi đề đúng ko vậy

Thắng Nguyễn
3 tháng 4 2016 lúc 11:39

Nhân hai vế với 2 :
2*\(\sqrt{x+2}\)*\(\sqrt{y-1}\) + 2*\(\sqrt{z-2}\) = x + y + z
<=>[ x - 2*\(\sqrt{x+1}\)] +[ (y - 1) - 2*\(\sqrt{y-1}\) + 1] + [(z - 2) - 2\(\sqrt{z-2}\) + 1 ] = 0
<=> [\(\sqrt{x-1}^2\) + [\(\sqrt{y-1}-1\)]2 + [\(\sqrt{z-2}-1\))2 = 0
=> x = 1 , y = 2 và z = 3

Nguyễn Trà My
3 tháng 4 2016 lúc 11:47

Kết quả thì đúng nhưng bước 1, 2  thì tớ không hiểu lắm

nguyen kim chi
Xem chi tiết
Trần Thị Loan
9 tháng 6 2015 lúc 14:08

Điều kiện : \(x\ge2;y\ge-2009;z\ge2010;x+y+z\ge0\)

PT <=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}=x+y+z\)

Áp dụng B ĐT Cô- si với 2 số dương a; b : \(2\sqrt{ab}\le a+b\) ta có:

\(2.\sqrt{x-2}\le x-2+1=x-1\)

\(2.\sqrt{y+2009}\le y+2009+1=y+2010\)

\(2.\sqrt{z-1010}\le z-2010+1=z-2009\)

=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}\le x-1+y+2010+z-2009=x+y+z\)

Dấu "=" xảy ra <=> x - 2 = 1 ; y + 2009 = 1; z - 2010 = 1

=> x = 3; y = -2008; z = 2011 là nghiệm của PT

Lê Huỳnh
26 tháng 3 2016 lúc 10:12

Điều kiện \(x\ge2\) vs \(y\ge-2009\) vs \(z\ge2010\)  Khi đó

PT \(\Leftrightarrow\) \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2009}-1\right)^2+\left(\sqrt{z-2010}-1\right)^2=0\)

nên => x=3 ; y=-2008 vs z=2011