Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cbbhdhx
Xem chi tiết
cbbhdhx
Xem chi tiết
Tiên Hồ Đỗ Thị Cẩm
Xem chi tiết
Phạm Thị Thùy Linh
2 tháng 7 2019 lúc 12:21

\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)

\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)

\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)

\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)

Phạm Thị Thùy Linh
2 tháng 7 2019 lúc 12:26

\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé 

\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

Tiên Hồ Đỗ Thị Cẩm
2 tháng 7 2019 lúc 12:43

 Linh ơi, câu a,b,c bạn làm đều đúng hết kết quả cách làm đều đúng nhưng mà ở chỗ câu c): \(\sqrt{x}^3+\sqrt{y}^3\)

không phải vậy đâu, mặc dù mình biết bạn hiểu, hay do sơ suất, nhưng mà chỗ đó là \(\sqrt{x^3}+\sqrt{y^3}\)nha! Dù sao cũng cảm ơn bạn nha!

Black Pie
Xem chi tiết
Ngô Chi Lan
15 tháng 8 2020 lúc 15:19

\(Q=\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x^3}-\sqrt{y^3}}{x-y}\)

\(Q=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(Q=\frac{x\sqrt{x}-y\sqrt{x}+x\sqrt{y}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(Q=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(Q=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

Khách vãng lai đã xóa
Ngô Chi Lan
15 tháng 8 2020 lúc 15:22

\(R=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(R=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right].\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(R=\left(1+\sqrt{a}+a\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)^2.\left(1+\sqrt{a}\right)^2}\)

\(=\left(1+\sqrt{a}\right)^2.\frac{1}{\left(1+\sqrt{a}\right)^2}=1\)

Khách vãng lai đã xóa
Black Pie
15 tháng 8 2020 lúc 15:24

ok nha

Khách vãng lai đã xóa
bach nhac lam
Xem chi tiết
tthnew
25 tháng 4 2020 lúc 18:22

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

zZz Cool Kid zZz
26 tháng 4 2020 lúc 11:26

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

bach nhac lam
2 tháng 3 2020 lúc 23:47

Nguyễn Ngọc Lộc , ?Amanda?, Phạm Lan Hương, Akai Haruma, @Trần Thanh Phương, @Nguyễn Việt Lâm,

@tth_new

Giúp em vs ạ! Thanks nhiều ạ

Khách vãng lai đã xóa
nguyễn hà quyên
Xem chi tiết
Thiên Thiên Chanyeol
2 tháng 9 2017 lúc 13:12

a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))

Thiên Thiên Chanyeol
2 tháng 9 2017 lúc 13:29

\(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))

Nguyễn Thiều Công Thành
Xem chi tiết
Hoàng Phúc
14 tháng 10 2017 lúc 21:51

câu hệ sao từ x^7-y^14 sao xuống đc (x-y^2)(x+y^2) ? 

Đoàn Đặng Bảo Trâm
Xem chi tiết
Witch Rose
Xem chi tiết
Kiệt Nguyễn
22 tháng 5 2020 lúc 18:30

Ta có: \(x^2\left(y+z\right)\ge x^2.2\sqrt{yz}=2\sqrt{x^4}.\sqrt{\frac{1}{x}}=2x\sqrt{x}\)(Áp dụng BĐT Cô - si cho 2 số dương y,z và sử dụng giả thiết xyz = 1)

Hoàn toàn tương tự: \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2\left(x+y\right)\ge2z\sqrt{z}\)

Do đó \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)

\(\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(a=x\sqrt{x}+2y\sqrt{y}\)\(b=y\sqrt{y}+2z\sqrt{z}\)\(c=z\sqrt{z}+2x\sqrt{x}\)

Suy ra: \(x\sqrt{x}=\frac{4c+a-2b}{9}\)\(y\sqrt{y}=\frac{4a+b-2c}{9}\)\(z\sqrt{z}=\frac{4b+c-2a}{9}\)

Do đó \(P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}\right)\)

\(=\frac{2}{9}\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\)

\(\ge\frac{2}{9}\left[4.3\sqrt[3]{\frac{c}{b}.\frac{a}{c}.\frac{b}{a}}+3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-6\right]\)(Áp dụng BĐT Cô - si cho 3 số dương)

\(=\frac{2}{9}\left[4.3+3-6\right]=2\)

Vậy \(P\ge2\)

Đẳng thức xảy ra khi x = y = z = 1

Khách vãng lai đã xóa