Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Nguyên
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
cherri cherrieee
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 4 2020 lúc 18:23

\(lim\left(u_n\right)=lim\left(\frac{n}{n^2+1}\right)=lim\left(\frac{\frac{1}{n}}{1+\frac{1}{n^2}}\right)=\frac{0}{1}=0\)

b/

\(-1\le cos\frac{\pi}{n}\le1\Rightarrow-\frac{n}{n^2+1}\le v_n\le\frac{n}{n^2+1}\)

\(lim\left(-\frac{n}{n^2+1}\right)=lim\left(\frac{n}{n^2+1}\right)=0\)

\(\Rightarrow lim\left(v_n\right)=0\)

Lê Nguyễn Thiện Lộc
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 12 2021 lúc 16:56

\(C^n_n+C^{n-1}_n+C^{n-2}_n=37\)

\(\Leftrightarrow1+\dfrac{n!}{\left(n-1\right)!}+\dfrac{n!}{\left(n-2\right)!2!}=37\)

\(\Leftrightarrow1+n+\dfrac{n\left(n-1\right)}{2}=37\)

\(\Rightarrow n=8\)

\(P=\left(2+5x\right)\left(1-\dfrac{x}{2}\right)^8=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{x}{2}\right)^k\right)\)

\(=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)

\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5x\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)

\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\)

Số hạng chứa \(x^3\) trong \(2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\) là \(2C^3_8.\left(-\dfrac{1}{2}\right)^3x^3\)

Số hạng chứa \(x^3\) trong \(5\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\) là \(5C^2_8.\left(-\dfrac{1}{2}\right)^2x^3\)

Vậy số hạng chứa x3 trong P là:\(\left[2.C^3_8\left(-\dfrac{1}{2}\right)^3+5C^2_8\left(-\dfrac{1}{2}\right)^2\right]x^3\)

Mai Tiến Đỗ
Xem chi tiết
Kirito Matsuy
Xem chi tiết
Mysterious Person
18 tháng 7 2018 lúc 15:52

ta có : \(Q=C^1_n+2\dfrac{C_n^2}{C_n^1}+...+k\dfrac{C^k_n}{C_n^{k-1}}+...+n\dfrac{C^n_n}{C_n^{n-1}}\)

\(\Leftrightarrow Q=\dfrac{n!}{1!\left(n-1\right)!}+2\dfrac{1!\left(n-1\right)!}{2!\left(n-2\right)!}+...+k\dfrac{\left(k-1\right)!\left(n-k+1\right)!}{k!\left(n-k\right)!}+...+\dfrac{n\left(n-1\right)!1!}{n!}\)

\(\Leftrightarrow Q=n+\dfrac{2\left(n-1\right)}{2}+...+\dfrac{k\left(n-k+1\right)}{k}+...+\dfrac{n}{n}\)

\(\Leftrightarrow Q=n+\left(n-1\right)+...+\left(n-k+1\right)+...+1\)

\(\Leftrightarrow Q=n^2-\left(1+\left(1+1\right)+\left(1+2\right)+...+\left(n-1\right)\right)\)

Phuongw Anh
Xem chi tiết
Akai Haruma
10 tháng 9 2023 lúc 23:51

Lần sau bạn lưu ý ghi đầy đủ yêu cầu của đề nhé.

Lời giải:

a. $A=\left\{1; 2; 3;4 5; 6; 7\right\}$

b. $B=\left\{34; 36; 38; 40\right\}$
c. $B=\left\{9; 10; 11; 12; 13\right\}$
d. $B=\left\{25; 27; 29\right\}$

Hày Cưi
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 11 2018 lúc 17:24

Đề phải là \(a_n+a_{n+1}\) mới hợp lý, chứ \(a_n+a_n+1\) thì đề sai rõ ràng.

\(a_n=1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)

\(a_{n+1}=1+2+...+n+\left(n+1\right)=a_n+n+1\)

\(\Rightarrow a_n+a_{n+1}=2.a_n+n+1=n\left(n+1\right)+n+1=n^2+2n+1=\left(n+1\right)^2\) (đpcm)

Hày Cưi
Xem chi tiết