Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Việt Hà
Xem chi tiết
Đào Thu Hoà
17 tháng 7 2019 lúc 20:48

1) Ta có: \(2020^2=\left(2019+1\right)^2=2019^2+2.2019+1.\)

\(\Rightarrow1+2019^2=2020^2-2.2019\)

\(\Rightarrow M=\sqrt{1+2019^2+\frac{2019^2}{2020^2}}+\frac{2019}{2020}=\sqrt{2020^2-2.2019+\frac{2019^2}{2020^2}}+\frac{2019}{2020}\)

\(=\sqrt{2020^2-2.2020.\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2}+\frac{2019}{2020}\)

\(=\sqrt{\left(2020-\frac{2019}{2020}\right)^2}+\frac{2019}{2020}=2020-\frac{2019}{2020}+\frac{2019}{2020}\)

\(=2020\)

Vậy M=2020.

2) Xét  : \(k\in N;k\ge2\)ta có:

\(\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{\left(k-1\right)k}-\frac{2}{k}\)

                                          \(=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{k-1}+\frac{2}{k}-\frac{2}{k}\)

\(\Rightarrow\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)

\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}+\frac{1}{k}\)

Cho \(k=3,4,...,2020.\)Ta có:

\(N=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2019^2}+\frac{1}{2020^2}}\)

\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2018}-\frac{1}{2019}\right)+\left(1+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(=2018+\frac{1}{2}-\frac{1}{2020}=2018\frac{1009}{2020}\)

Vậy \(N=2018\frac{1009}{2020}.\)

caominhduong
Xem chi tiết
Phạm Tuấn Long
Xem chi tiết
Akai Haruma
14 tháng 8 2019 lúc 12:41

Lời giải:

Xét số hạng tổng quát:

\(\frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:

\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\)

\(=1-\frac{1}{\sqrt{2020}}\)

Lê Thanh Nhã Vi
Xem chi tiết
Trần Gia Huy
20 tháng 7 2019 lúc 16:34

\(\forall k\ge0\)ta có :

\(\frac{1}{\sqrt{k}+\sqrt{k+1}}=\frac{\sqrt{k+1}-\sqrt{k}}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)

Bạn áp dụng công thức này vào dãy trên ta sẽ có các số hạng triệt tiêu đi nhau và ra kết quả

Le Minh Hieu
Xem chi tiết
Đặng Thùy Linh
13 tháng 8 2019 lúc 21:08

bn có thể tham khảo ở sách vũ hữu binh nha

Trần Huỳnh Tú Trinh
Xem chi tiết
Phạm Lan Hương
4 tháng 12 2019 lúc 20:54
https://i.imgur.com/agp1B8G.jpg
Khách vãng lai đã xóa
Hoaa
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 7 2020 lúc 9:44

1. Kẻ \(BH\perp AC\Rightarrow BH=AB.sin60^0=2\sqrt{2}.\frac{\sqrt{3}}{2}=\sqrt{6}\)

\(\Rightarrow S_{ABC}=\frac{1}{2}BH.AC=3\sqrt{2}\)

2. \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right)\left(\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n\left(n+1\right)^2}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)

\(S=2020\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\right)\)

\(=2020\left(1-\frac{1}{\sqrt{2020}}\right)=2020-\sqrt{2020}\)

Trần Minh Hoàng
5 tháng 7 2020 lúc 9:48

1.

SABC = \(\frac{AB.AC.sin\widehat{BAC}}{2}\) = ...

Lê Thị Nhật Quỳnh
Xem chi tiết
Ngô Chi Lan
28 tháng 9 2020 lúc 17:51

Xét phân thức phụ sau, với n nguyên dương lớn hơn 1 ta có:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{2\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}\right)^2\sqrt{n}}=2\left(\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}\right)\sqrt{n}}\right)\)

\(=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

=> \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán ta được:

\(A=2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\right)\)

\(A=2-\frac{2}{\sqrt{2020}}< 2=B\)

Vậy A < B

Khách vãng lai đã xóa
Nữ hoàng sến súa là ta
Xem chi tiết