cho x, y, z là 3 số chính phương . chứng minh (x- y).(x-z).(y-z) chia hết cho 12
Cho 3 số chính phương x, y, z
Chứng minh rằng:
(x-y) (y-z) (z-x) chia hết cho 12
Ai giải nhanh nhất, đúng nhất cho 5 tick!
Đề bài:Cho 3 số chính phương x,y,z. Chứng minh rằng (x-y)(y-z)(z-x) chia hết cho 12.
Cho 3 số chính phương x, y, z. CMR: (x - y)(y - z)(z - x) chia hết cho 12
bài này bạn giải rồi mà
Số chính phương chia 3 dư 0 hoặc 1.
Số chính phương chia 4 dư 0 hoặc 1.
Đặt A = (x - y)(y - z)(z - x)
Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1
- Vì x, y, z chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> x - y hoặc y - z hoặc z - x chia hết cho 3
=> A chia hết cho 3 (1)
- Vì x, y, z chia 4 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> x - y hoặc y - z hoặc z - x chia hết cho 4
=> A chia hết cho 4 (2)
Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12
Cậu lấy trong quyển Toán nâng cao nào vậy ?
Cho 3 số chính phương x, y, z. CMR: (x - y)(y - z)(z - x) chia hết cho 12
Ap dụng:
Số chính phương chia 3 dư 0 hoặc 1.
Số chính phương chia 4 dư 0 hoặc 1.
Đặt A = (x - y)(y - z)(z - x)
Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1
- Vì x, y, z chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> x - y hoặc y - z hoặc z - x chia hết cho 3
=> A chia hết cho 3 (1)
- Vì x, y, z chia 4 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> x - y hoặc y - z hoặc z - x chia hết cho 4
=> A chia hết cho 4 (2)
Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12
Hình như tớ nhớ ffffffg hỏi một câu tương tự và bạn trần như trả lời xong rồi k đúng .
Cho a,b,c là 3 số chính phương
CMR:(x-y)(y-z)(z-x) chia hết cho 12
Áp dụng:
Số chính phương chia 3 dư 0 hoặc 1.
Số chính phương chia 4 dư 0 hoặc 1.
Đặt A = (x - y)(y - z)(z - x)
Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1
- Vì x, y, z chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> x - y hoặc y - z hoặc z - x chia hết cho 3
=> A chia hết cho 3 (1)
- Vì x, y, z chia 4 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> x - y hoặc y - z hoặc z - x chia hết cho 4
=> A chia hết cho 4 (2)
Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12
cho B=(x-y).(y-z).(z-x). Trong đó x,y,z là số chính phương. Chứng minh rằng B chia hết cho 12
Do \(x,y,z\) là số chính phương nên chỉ có thể chia 3 và 4 dư 0 hoặc dư 1.
Theo nguyên lí Dirichlet, tồn tại 2 số có cùng số dư khi chia cho 3 và 4. Không mất tính tổng quát, giả sử là \(x,y\)
\(\Rightarrow\left\{{}\begin{matrix}x-y⋮3\\x-y⋮4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}B⋮3\\B⋮4\end{matrix}\right.\) \(\Rightarrow B⋮12\), đpcm
Tiếp nè :
1.Cho x,y,z là 3 số chính phương
CM:(x-y)(y-z)(z-x) chia hết cho 12
2.Cho \(4m^2+m=5n^2+n\)
CM:m-n và 5m+5n+1 là 2 số chính phương
1/Vì x,y,z là số chính phương nên x,y,z chia 3 dư 0 hoặc 1 và x,y,z chia 4 dư 0 hoặc 1 (tự CM)
TH1: x,y,z chia 3 dư 0 hoặc 1
Có: (x-y)(y-z)(z-x)
Vì x,y,z chia 3 dư 0 hoặc 1 nên có ít nhất 1 số chia hết cho 3
Suy ra: (x-y)(y-z)(z-x) chia hết cho 3 (1)
Tương tự: (x-y)(y-z)(z-x) chia hết cho 4 (2)
Từ (1) và (2)
Vậy (x-y)(y-z)(z-x) chia hết cho 12
2/ Có:
\(4m^2+m=5n^2+n\)
\(\Leftrightarrow5m^2-5n^2+m-n=m^2\)
\(\Leftrightarrow5\left(m-n\right)\left(m+n\right)+\left(m-n\right)=m^2\)
\(\Leftrightarrow\left(m-n\right)\left(5m+5n+1\right)=m^2\)
Do đó: để CM m-n và 5m+5n+1 là scp thì chúng phải là 2 số nguyên tố cùng nhau
Gọi d là \(ƯCLN\left(m-n;5m+5n+1\right)\)
Do đó: \(\hept{\begin{cases}m-n⋮d\\5m+5n+1⋮d\end{cases}\Leftrightarrow m^2⋮d^2}\Leftrightarrow m⋮d\)
Suy ra: \(n⋮d\)
Hay: \(5m+5n⋮d\)
Mà \(5m+5n+1⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vì thế m-n và 5m+5n+1 là 2 số nguyên tố cùng nhau
Vậy KL.....
Cho x,y,z là các số chính phương thỏa mãn : x2 +y2=z2.Chứng minh rằng xyz chia hết cho 60
Cho x,y,z là các số nguyên thỏa mãn:\(x^2+y^2=z^2\)
a) CMR: trong 2 số x,y ít nhất có mộ số chia hết cho 3
b) chứng minh tchs x,y chia hết cho 12