tìm n\(\in N\)sao cho A=\(n^{2017}+n^{2015}+1\)là số nguyên tố
Tìm số tự nhiên n để n2017 + n2015 +1 là số nguyên tố
tính số cuối cùng và cộng lại nếu là số lẻ thì nguyên tố
tính số cuối cùng và cộng lại nếu là số lẻ thì nguyên tố
Đinh Ngọc Dương OLM không đón mấy đứa thích gáy ngu nhưng không giải
Xét n=0 ( KTM )
Xét n=1 thỏa mãn
Xét n lớn hơn hoặc bằng 2:
\(A=n^{2017}+n^{2015}+1\)
\(=\left(n^{2017}-n\right)+\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2016}-1\right)+n\left(n^{2014}-1\right)+\left(n^2+n+1\right)\)
\(n^{2016}-1=\left[\left(n^3\right)^{672}-1^{672}\right]=\left(n^3-1\right)\cdot P=\left(n-1\right)\left(n^2+n+1\right)\cdot P=\left(n^2+n+1\right)\cdot P'\)
Tương tự:\(n^{2014}-1=\left(n^2+n+1\right)\cdot T'\)
Khi đóL\(A=\left(n^2+n+1\right)\left(P'+T'+1\right)\) là hợp số
a) tìm số nguyên dương a sao cho a2017+a2015+1 là số nguyên tố
b) với a,b là các số nguyên dương sao cho a+1 và b+2013 chia hết cho 6 . C/m an+a+b chia hết cho 6
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
tìm tất cả các số nguyên dương sao cho n^2015 +n+1 là 1 số nguyên tố
Với n nguyên dương.
Đặt A=\(n^{2015}+n+1=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(\left(n^3\right)^{.671}-1\right)+\left(n^2+n+1\right)\)
Mà : \(\left(n^3\right)^{.671}-1⋮\left(n^3-1\right)\)
và \(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\)
=> \(\left(n^3\right)^{671}-1⋮\left(n^2+n+1\right)\)
=> \(A⋮n^2+n+1\)
Theo bài ra: A là số nguyên tố
=> \(\orbr{\begin{cases}A=n^2+n+1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n^{2015}=n^2\\n^2+n=0\end{cases}\Leftrightarrow}}\orbr{\begin{cases}n=1\left(tm\right)\\n=0;n=-1\left(loai\right)\end{cases}}\)vì n nguyên dương
Vậy n=1
Tìm x thuộc N để x^2017 + x^2015 + 1 là số nguyên tố
tìm n \(\in\)Z+ để 1+n2017+n2015 là số nguyên tố
ai làm đc giúp với, k cần đầy đủ, chỉ cần gợi ý thôi
đặt A=1+n^2017+n^2015
ta có x=1 thì A(1)=3 là SNT
Tìm tất cả các số nguyên dương n sao cho : n2015 + n + 1 là một số nguyên tố.
Xét n=1 thì biểu thức A = 3
Xét n>1:
Ta có: \(A=n^{2015}+n+1\)
\(=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)
Dễ nhận ra \(n^{2013}-1⋮n^3-1\Rightarrow n^{2013}-1=k\left(n^3-1\right)=k\left(n-1\right)\left(n^2+n+1\right)\)
\(\Rightarrow n^2\left(n^{2013}-1\right)=k\left(n-1\right)n^2\left(n^2+n+1\right)=k'\left(n^2+n+1\right)\)
\(\Rightarrow A=k'\left(n^2+n+1\right)+\left(n^2+n+1\right)=\left(n^2+n+1\right)\left(k'+1\right)\)là hợp số
Vậy n=1
Tìm số tự nhiên n sao cho n^2015+n+1 là số nguyên tố
Cho \(A=n^{2018}+n^{2017}+1\)
tìm số tự nhiên n sao cho A là số nguyên tố
Với n=0 thì \(A=1\) không là số nguyên tố
Với n=1 thì \(A=3\) là số nguyên tố
Với \(n\ge2\) ta có:
\(A=n^{2018}+n^{2017}+1\)
\(=\left(n^{2018}-n^2\right)+\left(n^{2017}-n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2016}-1\right)+n\left(n^{2016}-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^{672}-1\right]+n\left[\left(n^3\right)^{672}-1\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\cdot A+n\left(n^3-1\right)\cdot B+n^2+n+1\)
\(=\left(n^2+n+1\right)\cdot A'+\left(n^2+n+1\right)\cdot B'+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A'+B'+1\right)\) là hợp số với \(\forall n\ge2\)
tìm số tự nhiên (n>0) sao cho: 1!+2!+3!+...+n! là một số chính phương.
tìm các số nguyên tố a,b,c để a2 + b2 + c2 cũng là số nguyên tố
CMR: A là số nguyên với A= (72016^2017 - 32014^2015)/5