Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hello Kitty
Xem chi tiết
Nguyen Thi Thanh Thao
Xem chi tiết
Nguyễn Huy Thành
12 tháng 4 2018 lúc 5:53

Có : \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\Rightarrow\dfrac{10a+b}{10b+c}=\dfrac{a}{c}=\dfrac{9a+b}{10b}\)( áp dụng dãy tỉ số bằng nhau)

\(=\dfrac{111...11.\left(9a+b\right)}{111..11.10b}\)(có n chữ số 1 trong số 111..111)

\(\dfrac{999..99a+111..11b}{111..110b}=\dfrac{a}{c}=\dfrac{999..99a+a+111..11b}{111..110b+c}=\dfrac{100...000a+111...11b}{111..110b+c}\)=\(\dfrac{\overline{abbb...bb}}{\overline{bbb..bbc}}=\dfrac{a}{c}\)

Hello Kitty
Xem chi tiết
soyeon_Tiểubàng giải
21 tháng 10 2016 lúc 17:45

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)

=> a = b = c (đpcm)

 

 

 

 

 

Nguyễn Xuân Yến Nhi
21 tháng 10 2016 lúc 15:28

soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó

soyeon_Tiểubàng giải
21 tháng 10 2016 lúc 17:40

1) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{ab}{bc}=\frac{a}{c}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\left(đpcm\right)\)

 

👁💧👄💧👁
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 9 2019 lúc 7:14

\(\frac{100a+10b+c}{a+10b+c}=\frac{100b+10c+a}{b+10c+a}\Leftrightarrow\frac{99a}{a+10b+c}=\frac{99b}{b+10c+a}\Leftrightarrow\frac{a}{a+10b+c}=\frac{b}{b+10c+a}\)

- Nếu \(a=0\Rightarrow b=0\) ngược lại thì hiển nhiên ta có \(\frac{a}{10b+c}=\frac{b}{10c+a}\)

- Nếu a; b đều khác 0

\(\Rightarrow\frac{a+10b+c}{a}=\frac{b+10c+a}{b}\Rightarrow\frac{10b+c}{a}=\frac{10c+a}{b}\Rightarrow\frac{a}{10b+c}=\frac{b}{10c+a}\) (đpcm)

Bài 2 tương tự

\(\frac{10a+11b+c}{a+b}=\frac{10b+11c+a}{b+c}=\frac{10c+11a+b}{c+a}\) (tách \(\frac{10a+11b+c}{a+b}=10+\frac{b+c}{a+b}\) và tương tự, bài 1 cũng vậy nếu em chưa hiểu tại sao lại rút gọn được như dấu tương đương đầu tiên)

\(\Rightarrow\frac{b+c}{a+b}=\frac{c+a}{b+c}=\frac{a+b}{c+a}=\frac{2a+2b+2c}{2a+2b+2c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+c=a+b\\c+a=b+c\\a+b=c+a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Bài 3: Đề bài thiếu, cần thêm 1 điều kiện gì đó

Em lấy thử \(\left(a;b;c;d\right)=\left(4;1;0;3\right)\) thì rõ ràng thỏa mãn giả thiết (\(0=0\)) nhưng 4 số này sao lập tỉ lệ thức được?

👁💧👄💧👁
27 tháng 9 2019 lúc 21:34

Vũ Minh TuấnBăng Băng 2k6tthNguyễn Hoàng NhiNguyễn Thị Diễm Quỳnh@Nk>↑@nguyen thi vangHoàng Tử HàHuyền

Barry Cipher
Xem chi tiết
minhduc
20 tháng 7 2017 lúc 15:13

ta có : ab/bc=a.b/b.c=a/c <=> abbbb..b/bbb.bc=a.b.b.....b/b.b.b....b.c=a/c

GT 6916
Xem chi tiết
Nguyệt
25 tháng 11 2018 lúc 8:18

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}=\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}=\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10a+11b+c}{a+2b+c}\)

\(\Rightarrow\frac{10a+b}{a+b}=\frac{10a+11b+c}{a+2b+c}\Rightarrow\left(10a+b\right).\left(a+2b+c\right)=\left(a+b\right).\left(10a+11b+c\right)\)

\(10a^2+20ab+10ac+ab+2b^2+bc=10a^2+11ab+ac+10ab+11b^2+bc\)

\(\Rightarrow9ac=9b^2\Rightarrow ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right)\)

p/s: bài này khó chơi lém, đoạn mk giản đơn hai vế ko hiểu ib vs mk :))

Vũ Trung Hiếu
Xem chi tiết
Wayne Rooney
Xem chi tiết
lupin
23 tháng 3 2018 lúc 22:46

Ngu người 

Phùng Minh Quân
24 tháng 3 2018 lúc 10:03

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{a+b+b+c+c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)

\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)

Lại có : \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

+) Nếu \(a+b+c=0\) : 

\(\Rightarrow\)\(a+b=-c\)

\(\Rightarrow\)\(b+c=-a\)

\(\Rightarrow\)\(a+c=-b\)

Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được : 

\(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)

+) Nếu \(a+b+c\ne0\) : 

Do đó : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Rightarrow\)\(10a+11b+c=11a+11b\)\(\Rightarrow\)\(c=a\)\(\left(1\right)\)

\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Rightarrow\)\(10b+11c+a=11b+11c\)\(\Rightarrow\)\(a=b\)\(\left(2\right)\)

\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Rightarrow\)\(10c+11a+b=11c+11a\)\(\Rightarrow\)\(b=c\)\(\left(3\right)\)

Từ (1), (2) và (3) suy ra : 

\(a=b=c\)

Suy ra : 

\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{b+b}{b}.\frac{c+c}{c}.\frac{a+a}{a}=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)

Vậy \(P=-1\) hoặc \(P=8\)

Chúc bạn học tốt ~ 

Oo_ Love is a beautiful...
Xem chi tiết
Kiệt Nguyễn
24 tháng 7 2019 lúc 7:29

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)

\(\Leftrightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

\(\Leftrightarrow\frac{a+b+9a}{a+b}=\frac{b+c+9b}{b+c}\)

\(\Leftrightarrow1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)

\(\Leftrightarrow\frac{9a}{a+b}=\frac{9b}{b+c}\)

\(\Leftrightarrow\frac{a}{a+b}=\frac{b}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)=b\left(a+b\right)\)

\(\Leftrightarrow ab+ac=ab+b^2\)

\(\Leftrightarrow ac=b^2\)

\(\Leftrightarrow\frac{a}{b}=\frac{b}{c}\)

Ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Rightarrow\frac{\overline{ab}}{\overline{bc}}=\frac{a+b}{b+c}=\frac{\overline{ab}-\left(a+b\right)}{\overline{bc}-\left(b+c\right)}\)

\(=\frac{10a+b-a-b}{10b+c-b-c}=\frac{9a}{9b}=\frac{b}{a}\)

\(\frac{a+b}{b+c}=\frac{a}{b}=\frac{a+b-a}{b+c-b}=\frac{b}{c}\)

Vậy: \(\frac{a}{b}=\frac{b}{c}\left(b,c\ne0\right)\)

Bn ơi mk nghĩ đề phải là : giả thuyết \(c\ne0\)bn nhé.......

#kiseki no enzeru#

hok tốt