cho Q= (1-1/2^2)*(1-1/3^2)*(1-1/4^2)...(1-1/40^2). So sanh Q voi 1/2
Giúp mk vs!
so sanh
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+........+\frac{1}{n^2}\) voi 1
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
Ta có: \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\left(1\right)\)
Mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\left(2\right)\). Từ (1) và (2) suy ra
\(A< B< 1\Rightarrow A< 1\)
> nha bạn
Chúc các bạn học giỏi
Tết vui vẻ nha
\(choB=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)
so sanh B voi \(-\frac{1}{2}\)
\(B=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(B=-\frac{3}{2^2}.\left(-\frac{8}{3^2}\right).\left(-\frac{15}{4^2}\right)...\left(-\frac{9999}{100^2}\right)\)
\(B=-\left(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\right)\)(Vì có 99 thừa số, mỗi thừa số là âm nên kết quả là âm)
\(B=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\right)\)
\(B=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\right)\)
\(B=-\left(\frac{1}{100}.\frac{101}{2}\right)\)
\(B=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
\(\Rightarrow B< -\frac{1}{2}\)
b với 1/2 hộ mình với
cho
A=(\(\frac{1}{2^2}\)-1).(\(\frac{1}{3^2}\)-1)....(\(\frac{1}{10^2}\)-1) hay so sanh A voi -1/2
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right)......\left(\frac{1}{10^2}-1\right)=\left(-\frac{3}{4}\right).\left(-\frac{8}{9}\right)......\left(-\frac{99}{100}\right)\)
\(A=\frac{\left(-3\right).\left(-8\right).....\left(-99\right)}{4.9........100}=\frac{\left(-1\right).3.\left(-2\right).4....\left(-9\right).11}{2.2.3.3.....10.10}=\frac{\left[\left(-1.-2.-3....-9\right).\left(3.4...11\right)\right]}{\left(2.3.....10\right).\left(2.3...10\right)}\)
\(A=\frac{\left(-1\right).11}{10.2}=\frac{-11}{20}< \frac{-10}{20}=\frac{-1}{2}\)
Suy ra \(A< -\frac{1}{2}\)
a, cho A = \(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{100^2}-1\right)\)
Hay so sanh : A voi \(-\frac{1}{2}\)
Cho A=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{100^2}-1\right)\)
So sanh A voi \(\frac{1}{2}\)
Ta dễ thấy trong tích A có 99 thừa số tức là có số thừa số là một số lẻ
Mặt khác : (1/2^2 - 1) < 0
(1/3^2 - 1) <0
.....
(1/100^2-1) < 0
vì tích a có số thừa số là số lẻ và các thừa số trong tích đều nhỏ hơn 0
Suy ra A<0
Mà 1/2 > 0
Suy ra A < 1/2
Theo mình thấy thì đề bài có vẻ ko đẹp lắm, nếu như đề bài cho 1 tích có số thừa số là số chẵn thì đẹp hơn bởi vì nó khó để phân tích
Chúc bạn học tốt...^^
So sanh A voi 1:
A=1/2*2 + 1/3*3 + 1/4*4 + .....+1/2011*2011
So sanh B voi 3/4:
B=1/2*2 + 1/3*3 +1/4*4 + ......+1/2011*2011
A=(1- 1/2\(^2\)).(1- 1/3\(^2\)).(1-1/4\(^2\))........(1- 1/100\(^2\)). So sanh A voi -1/2
các số mỗi khi bình phương lên đều là một số dương, biểu thức A lại là tích của các bình phương liên tiếp nen biểu thức A có kết quả dương, mà -1/2 là số âm nên biểu thức A>-1/2
nếu đúng tick đúng cho mik nhá
Vì các thừa số đều là dương => A là 1 số dương và -1/2
=> A > -1/2
Vì các số hạng của A dương
=> A > 0
}
MÀ -1/2 < 0
=> A > -1/2
Cho M=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\).Hay so sanh M voi \(1\frac{1}{3}\)
cho \(Q=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{40^2}\right)\)so sánh Q với \(\frac{1}{2}\)
ai làm giúp mk mk cho tk
Ta có: Q=(1-1/2^2).(1-1/3^2).....(1-1/40^2)
Q=3/2^2.8/3^2....1599/40^2
Q=(3/2.2).(8/3.3)...(1599/40.40)
Q=(1.3/2.2).(2.4/3.3)...(39.41/40.40)
Q=(1.2...39/2.3...40).(3.4...41/2.3...40)
Q=1/40.41/2
Q=41/80
Mà 41/80>40/80=1/2
=>Q > 1/2
\(Q=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{40^2}\right)\)
\(\Rightarrow Q=\left(\frac{4}{4}-\frac{1}{4}\right)\left(\frac{9}{9}-\frac{1}{9}\right)...\left(\frac{1600}{1600}-\frac{1}{1600}\right)\)
\(\Rightarrow Q=\frac{3}{4}.\frac{8}{9}...\frac{1599}{1600}\)
\(\Rightarrow Q=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{39.41}{40.40}\)
\(\Rightarrow Q=\frac{\left(1.2.3...39\right)\left(3.4.5...41\right)}{\left(2.3.4...40\right)\left(2.3.4...40\right)}\)
\(\Rightarrow Q=\frac{41}{40.2}=\frac{41}{80}>\frac{40}{80}=\frac{1}{2}\)
Vậy \(Q>\frac{1}{2}\)