Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
stella solaria
Xem chi tiết
❤  Hoa ❤
Xem chi tiết
Arima Kousei
29 tháng 4 2018 lúc 12:13

Dễ CM : 

\(1< A< 2\)

❤  Hoa ❤
29 tháng 4 2018 lúc 12:16

mệt !

mik đăng lên bởi mik ko biết làm 

bn nói vậy mình ko hỉu 

làm giúp mik ik

mik đag cần bài này để ôn thi !

I don
29 tháng 4 2018 lúc 16:38

ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2018^2}< \frac{1}{2017.2018}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

                                                                         \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

                                                                           \(=1-\frac{1}{2018}=\frac{2017}{2018}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}< \frac{2017}{2018}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\) không phải số tự nhiên

\(\Rightarrow1+\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\right)\) là hỗn số

\(\Rightarrow A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\) không phải số tự nhiên ( đ p c m)

Phạm Thị Hải Minh
Xem chi tiết
Đông joker
Xem chi tiết
Thắng Nguyễn
15 tháng 5 2016 lúc 19:34

chứng minh 1<A<2 là đc

Đông joker
15 tháng 5 2016 lúc 19:50

giải hẳn ra đi bạn

Trần Đức Nam
Xem chi tiết
Nguyễn Thị Thu Huyền
Xem chi tiết
Vũ Thị Hà Phương
Xem chi tiết
Lê Thiên Hương
Xem chi tiết
Nguyễn Hữu Trung
8 tháng 4 2019 lúc 19:52

bạn ơi bài này có trong bùi văn tuyên

Trần Tiến Pro ✓
8 tháng 4 2019 lúc 20:20

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< 1\)

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}\)

\(A< \frac{99}{100}< 1\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\text{ ko phải là 1 số tự nhiên ( đpcm )}\)

Nguyễn Hữu Trung
8 tháng 4 2019 lúc 20:25

bạn tiến làm hoi tắt

Trà Nhật Đông
Xem chi tiết