Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thùy Liên
Xem chi tiết
nguyen lan anh
Xem chi tiết
Dragon
11 tháng 11 2015 lúc 20:06

vi p la so nguyen to

đặt p = có dạng 3k, 3k+1, 3k+2

Thay vào

+>p+10=3k+10

p+14=3k+14(chọn)

+>p+10=3k+1+10=3k+11

p+14=3k+1+14=3k+15=>loại

+>p+10=3k+2+10=3k+12=>loại

Từ các bt trên suy ra snt cần tìm là 3

Các câu sau làm tuong tu

 

Nuyễn Huy Tú
Xem chi tiết
Chu Mạnh Cường
22 tháng 11 2021 lúc 18:39

ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc 

Khách vãng lai đã xóa
Lâm Thanh Anh Dũng
Xem chi tiết
Akai Haruma
21 tháng 10 2023 lúc 22:11

Lời giải:

Nếu $p$ là snt chia hết cho $5$ thì $p=5$. Khi đó $p+6. p+8, p+12, p+14$ đều là snt (thỏa mãn) 

Nếu $p$ chia $5$ dư $1$. Đặt $p=5k+1$ với $k$ tự nhiên.

Khi đó $p+14=5k+15=5(k+3)\vdots 5$. mà $p+14>5$ nên không thể là snt (trái giả thiết - loại)

Nếu $p$ chia $5$ dư $2$. Đặt $p=5k+2$ với $k$ tự nhiên.

Khi đó $p+8=5k+10=5(k+2)\vdots 5$. mà $p+8>5$ nên không thể là snt (trái giả thiết - loại)

Nếu $p$ chia $5$ dư $3$. Đặt $p=5k+3$ với $k$ tự nhiên.

Khi đó $p+12=5k+15=5(k+3)\vdots 5$. mà $p+12>5$ nên không thể là snt (trái giả thiết - loại)

Nếu $p$ chia $5$ dư $4$. Đặt $p=5k+4$ với $k$ tự nhiên.

Khi đó $p+6=5k+10=5(k+2)\vdots 5$. mà $p+6>5$ nên không thể là snt (trái giả thiết - loại)

Vậy $p=5$ là đáp án duy nhất.

Nguyễn Thị Hương Lê
Xem chi tiết
shitbo
11 tháng 12 2018 lúc 13:37

Xet p=2;p=5;p=3

Sau do xet p>5

Đào Thị Phương Lan
Xem chi tiết
Nguyễn Thanh Tùng
26 tháng 2 2017 lúc 16:28

tớ chỉ biết làm phần d thôi

            Vì p là số nguyên tố nên \(\Rightarrow\) p có dạng 3k,3k+1,3k+2

        +) Nếu p =3k \(\Rightarrow\)p =3 thì p+2=3+2=5

                                                  p+4=3+4=7 là số nguyên tố (chọn)

        +) Nếu p=3k+1 \(\Rightarrow\) p+2 =(3k+3) \(⋮\)3 là hợp số (loại)

        +) Nếu p=3k+2 \(\Rightarrow\)p+4=(3k+6)\(⋮\)3 là hợp số (loại)

                            Vậy số cần tìm là 3

alibaba nguyễn
26 tháng 2 2017 lúc 20:42

Chỉ cần 1 cách của nhuyễn thanh tùng có thể giải quyết cả 4 câu nên 3 câu còn lại e tự làm tiếp nhé

Nguyễn Thanh Tùng
26 tháng 2 2017 lúc 21:51

a) +) Ta xét p=2 \(\Rightarrow\)p+10 =2+10=12   là hợp số trái với đề bài (loại)

                                p+14=2+14=16    là hợp số trái với đề bài (loại)

    +) Ta xét p=3\(\Rightarrow\)p+10=3+10=13    là số nguyên tố (chọn) 

                                p+14=3+14=17    là số nguyên tố (chọn)

    +) Nếu p=3k+1 thì p+10=3k+1+10=3k+11

                                p+14=3k+1+14=(3k+15)\(⋮\)3 là hợp số (loại)

     +) Nếu p=3k+2 thì p+10=3k+2+10 số (loại)

                               \(\Rightarrow\)(3k+12)\(⋮\)3 là hợp số (loại)

                                     Vậy p=3

NHỚ K NHA 

                              

nguyễn thị mi
Xem chi tiết
Lưu Thanh Hòa
4 tháng 11 2015 lúc 21:53
abab = ab * 101 => không thuộc Pdo 6;8;12;14 đều là các số chẵn
để p+6; p+8; p+12; p+14 là số nguyên tố
=> p chẵn
Riin
Xem chi tiết
Lê Trung Hiếu
11 tháng 8 2018 lúc 20:03

xét p = 2 =>p+10 là hợp số =>ko tm

xét p = 3=>p+10=13,p+14=17 tm

xét p>3 => p=3k+1,p=3k+2

- nếu p = 3k+1 thì p+14 = 3k+15 chia hết cho 3 mà 3k+1>3=>p=3k+1 ko tm

- nếu p=3k+2 thì p+10 = 3k+12 chia hết cho 3 mà 3k+2>3=>p=3k+2 ko tm

Shinran
11 tháng 8 2018 lúc 20:07

a) P+10 và P+14

+ Nếu P=2=> P+10=12; P+14=16(loại)

- Nếu P=3=> P+10=13; P+14=17(tm)

Nếu P>3=> P có dạng 3k;3k+1;3k+2

+Với P=3k mà P>3=> k>1=> P là hợp số ( loại)

+Với P=3k+1=> P+14=3k+1+14=3k+15 chia hết cho 3( loại)

+Với P=3k+2=> P+10=3k+2+10=3k+12 chia hết cho 3( loại)

Vậy với P=3 thì P+10 và P+14 là số nguyên tố.

Các phần còn lại bn làm tương tự

Thấy đúng thì tk nha, thanks nhìu ^_^

Quỳnh Như
Xem chi tiết
Dương Hoàng Anh Văn ( Te...
18 tháng 6 2017 lúc 18:36

p=5

vì 5+6=11 là số nguyên tố

5+14=19 là số nguyên tố

5+12=17 là số nguyên tố

5+8=13 là số nguyên tố

tk nha