Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thành Ngọc Huyền Trâm
Xem chi tiết
Nguyễn Thị Thu Hiền
17 tháng 4 2016 lúc 10:21

a) Ta có ^BEA = 90 - ^ ABE

             ^BEH = 90 - ^EBH 

mà ^ABE = ^EBH ( do BE là tia phân giác)

=> ^BEA=^BEH

Xét tam giác ABE và Tam giác HBE có

           ^ABE=^BEH (gt)

            BE chung 

            ^BEA=^BEH (cmt)

=> tam giác ABE=Tam giác HBE

b) chỉ cần chứng minh BE là đườn trug tuyến là xog

Đào thị thảo
Xem chi tiết
Nguyễn Linh Trâm
Xem chi tiết
I don
17 tháng 5 2018 lúc 16:00

a) Xét tam giác ABE vuông tại A và ta giác HBE vuông tại H

có: BE là cạnh chung

góc ABE = góc HBE (gt)

\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)

b) ta có: \(\Delta ABE=\Delta HBE\left(pa\right)\)

=> AE = HE ( 2 cạnh tương ứng)

Xét tam giác AEM vuông tại A và tam giác HEC vuông tại H

có: AE = HE ( cmt)

góc AEM = góc HEC ( đối đỉnh)

\(\Rightarrow\Delta AEM=\Delta HEC\left(cgv-gn\right)\)

=> EM = EC ( 2 cạnh tương ứng)

c) Gọi BE cắt CM tại K

ta có: \(\Delta ABE=\Delta HBE\left(pa\right)\)

=> AB = HB ( 2 cạnh tương ứng) (1)

ta có: \(\Delta AEM=\Delta HEC\) ( chứng minh phần b)

=> AM = HC ( 2 cạnh tương ứng) (2)

Từ (1);(2) => AB + AM = HB + HC

                => BM = BC (*)

Xét tam giác BMH vuông tại H

có: BM > MH ( quan hệ cạnh huyền, cạnh góc vuông) (**)

Từ (*), (**) => BC>MH

mk ko bít kẻ hình trên này, sorry bn nha!

      

phan thi van anh
Xem chi tiết
sakurakimoto
Xem chi tiết
Trương Công Phước
Xem chi tiết
Đặng Tấn Phát
28 tháng 10 2023 lúc 19:14

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác của góc HBA).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

Phan Quốc Việt
Xem chi tiết
yến
29 tháng 4 2016 lúc 19:50

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D

Phan Quốc Việt
Xem chi tiết
Xuân Trà
30 tháng 4 2016 lúc 18:34

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
 

Phan Quốc Việt
Xem chi tiết
OoO Love Forever And Onl...
30 tháng 4 2016 lúc 19:05

Bạn tự vẽ hình nha!!!

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

Vương Nguyên
30 tháng 4 2016 lúc 19:41

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

Nhung Nguyễn
30 tháng 4 2016 lúc 19:58

3. a.

xét tg ABD & EBD:

ABD=EBD(fan giác BD)

BAD=BED(=90độ)

BD(cạnh chung)

suy ra tg ABD=EBD(ch-gn)

sra: BA= BE(cctuong ung)

sra: B thuộc trung trực AE(1)

sra: AD=De(cctuong ung)

sra: D thuộc trung trực AE(2)

từ (1) và(2) sra: BD là trung trực AE

b. xét tg ADFvàEDF

AD=DE(cmt)

ADF=EDC(đối đỉnh)

DAF=DEC(90 độ)

sra: tg ADF=EDF(gcg)

sra:DF=DC(cct ứng)

c.tg EDC: ED<DC(cgv<ch)

mà ED=AD

sra: AD<DC

4.

a.xét tg ABE & HBE:

ABE=EBH(fan giác BD)

BAE=BHE(=90độ)

BE(cạnh chung)

suy ra tg ABE=HBE(ch-gn)

b.      sra: BA= BE(cctuong ung)

sra: B thuộc trung trực AH(1)

sra: AE=He(cctuong ung)

sra:E thuộc trung trực AE(2)

từ (1) và(2) sra: BE là trung trực AH

c. xét tg AEKvàHEC

AE=HE(cmt)

ADF=EDC(đối đỉnh)

AEK=HEC(90 độ)

sra: tg AEK=HEC(gcg)

sra:DF=DC(cct ứng)

tg HEC: EH<EC(cgv<ch)

mà EA=EH

sra:EA<EC

5.

a. 

Tg ABC cân: AM là trung tuyến

sra: Am là phân giác góc BAC(tính chất tam giác cân)

b. 

xét tg ABD và ACD:

AB=AC(tg ABC cân)

BAD=CAD(fan giác Am)

AD (cạnh chung)

sra: tg ABD= ACD( cgc)

c. ta có: BD=CD(cctuong ứng)

sra: tg BCD cân tại D

6.

a.

vì D thuộc tia phân giác góc ABC

sra: DA=DH( D cách đều 2 cạnh của góc)

b.

tg HDC: HD<DC(cgv<ch)

mà DA=DH(cmt)

sra DA< DC

c. 

Tg BKC: D là trực tâm

sra: BD vuông góc KC

mà BD là phân giác góc KBC

sra: tg BKC cân 

Dang Khanh Ngoc
Xem chi tiết
Nhân Thiện Hoàng
11 tháng 2 2018 lúc 12:28

khó thể xem trên mạng

Vũ Nguyễn
2 tháng 5 2018 lúc 21:01

Hình tự vẽ

a)Xét hai tam giác vuông ABE và HBE CÓ:

AE-chung

góc ABE=góc HBE(gt)

=>tam giác ABE=tam giác HBE(ch-gn)

b)Có tam giác ABE=tam giác HBE(cmt)

=>AB=BH

=>Tam giác BHA cân tại B

mà BE là p/g của góc ABH

=>BE là đường cao, đường trung tuyến

=>BE\(\perp\) AH

c)Xét tam giác AEK và tam giác HEC CÓ

góc KAE=góc EHC=900

AE=EH

góc AEK=góc HEC

=>tam giác AEK= tam giác HEC(c.g.c)

=>EK=EC

d)Xét tam giác EHC có góc EHC=900

=> EC là cạnh lớn nhất

=>EC>EH

Mà EH=AE

=>EC>AE