cho \(a=\sqrt{2013}+\sqrt{2014}\)
rút gọn ::: \(A=a^4-8054a^2+2015\)
Rút gọn \(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+\frac{1}{\sqrt{4}-\sqrt{5}}-...-\frac{1}{\sqrt{2013}+\sqrt{2014}}+\frac{1}{\sqrt{2014}-\sqrt{2015}}\)
\(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...-\frac{1}{\sqrt{2013}-\sqrt{2014}}+\frac{1}{\sqrt{2014}-\sqrt{2015}}\)
\(=\frac{\sqrt{2}+\sqrt{3}}{2-3}-\frac{\sqrt{3}+\sqrt{4}}{3-4}+...+\frac{\sqrt{2014}+\sqrt{2015}}{2014-2015}\)
\(=-\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{3}+\sqrt{4}-\left(\sqrt{4}+\sqrt{5}\right)+...+\sqrt{2014}+\sqrt{2015}\)
=\(-\sqrt{2}+\sqrt{2015}\)
So sánh 2 số:
\(a)\sqrt{2014}-\sqrt{2013};B=\sqrt{2015}-\sqrt{2014}\\ b)E=\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}};F=\sqrt{2014}+\sqrt{2015}\)
Tính gía trị biểu thức:
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2014\sqrt{2013}+2013\sqrt{2014}}+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
Rút gọn biểu thức:
a) \(A=\frac{2\left(\sqrt{5}+1\right)}{\sqrt{5}-1}-\frac{10+2\sqrt{5}}{\sqrt{5}+1}-1\)
b)\(B=\sqrt{\left(1-\sqrt{2014}\right)2}.\sqrt{2015+2\sqrt{2014}}\)
\(A=\frac{\left(2\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}\sqrt{5}+2\right)\left(\sqrt{5}+1\right)-\left(10+2\sqrt{5}\right)\left(\sqrt{5}-1\right)}{5-1}-1\)
\(=\frac{10+2\sqrt{5}+2\sqrt{5}+2-10\sqrt{5}+10-10+2\sqrt{5}}{4}-1\)
\(=\frac{12-4\sqrt{5}}{4}-1\)
\(=\frac{4\left(3-\sqrt{5}\right)}{4}-1\)
\(=3-\sqrt{5}-1\)
\(=2-\sqrt{5}\)
(còn biểu thức B hình như sai đề, bạn coi lại đề)
đề câu B nè : \(B=\sqrt{\left(1-\sqrt{2014}\right)^2}.\sqrt{2015+2\sqrt{2014}}\)
\(B=\sqrt{\left(1-\sqrt{2014}\right)^2}\sqrt{2015+2\sqrt{2014}}\)
\(=|1-\sqrt{2014}|.\sqrt{2014+2\sqrt{2014}+1}\) ( thừa số phía sau mình p/tích thành hằng đẳng thức)
\(=\left(\sqrt{2014}-1\right).\sqrt{|\sqrt{2014}+1|}\)(vì 1- căn của 2014 <0)
\(=\left(\sqrt{2014}-1\right).\left(\sqrt{2014}+1\right)\)
\(=2014+\sqrt{2014}-\sqrt{2014}-1\)
= 2013
Bài 1: tính tổng
a)1+2-3-4+5+6-7-8+...+ 2013 -2014- 2015- 2016
b)1-2-3-4+5+6-7-8+...+2013+2014-2015-2016
bài 2: rút gọn
a) (a+b- c)-(b+c-a)-(c+a-b)×(a+b -c)
b) (a+b)+(b-c)+(c-a )
Rút gọn
\(A=\frac{1}{1+\sqrt{2}}\)+\(\frac{1}{\sqrt{2}+\sqrt{3}}\)+\(\frac{1}{\sqrt{3}+\sqrt{4}}\)+....+\(\frac{1}{\sqrt{2014}+\sqrt{2015}}\)
\(\frac{1}{1+\text{ }\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2014}+\sqrt{2015}}\)
\(=\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+..+\frac{\sqrt{2014}-\sqrt{2015}}{\left(\sqrt{2014}+\sqrt{2015}\right)\left(\sqrt{2014}-\sqrt{2015}\right)}\)
\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{2014}-\sqrt{2015}}{2014-2015}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2005}-\sqrt{2004}=\sqrt{2005}-1\)
dangj tổng quát : cmr :\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n}-\sqrt{n+1}\left(\right)dùngtrụccăthứcởmẫu\left(\right)\)
So sánh:
a) \(\sqrt{25}+\sqrt{45}\) và 12
b) \(\sqrt{2013}+\sqrt{2015}\) và \(2\sqrt{2014}\)
c) \(\sqrt{2014}-\sqrt{2013}\) và \(\sqrt{2013}-\sqrt{2012}\)
a) Có \(\sqrt{25}=5;\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{25}+\sqrt{45}< 5+7=12\)
Vậy \(\sqrt{25}+\sqrt{45}< 12.\)
b) có \(\left(\sqrt{2013}+\sqrt{2015}\right)^2=2013+2015+2\sqrt{2013}.\sqrt{2015}\)\(=4028+2\sqrt{2013.2015}\)
\(\left(2\sqrt{2014}\right)^2=4.2014=4028+2.2014=4028+2\sqrt{2014^2}\)
Xét \(2014^2-2013.2015=2014.\left(2013+1\right)-2013\left(2014+1\right)\)
\(=2013.2014+2014-2013.2014-2013=1>0\)
\(\Rightarrow2\sqrt{2013.2015}< 2\sqrt{2014^2}\)
Hay \(\left(\sqrt{2013}+\sqrt{2015}\right)^2< \left(2\sqrt{2014}\right)^2\)
\(\Rightarrow\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}\)
Vậy \(\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}.\)
c) Có \(\left(\sqrt{2014}-\sqrt{2013}\right)\left(\sqrt{2014}+\sqrt{2013}\right)=2014-2013=1\)\(\rightarrow\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)
Mà \(\sqrt{2014}>\sqrt{2013};\sqrt{2013}>\sqrt{2012}\)
\(\rightarrow\sqrt{2014}+\sqrt{2013}>\sqrt{2013}+\sqrt{2012}\)
Hay \(\dfrac{1}{\sqrt{2014}+\sqrt{2013}}< \dfrac{1}{\sqrt{2013}+\sqrt{2012}}\)
Tương tự, ta có \(\dfrac{1}{\sqrt{2013}+\sqrt{2012}}=\sqrt{2013}-\sqrt{2012}\)
\(\Rightarrow\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}\)
Vậy \(\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}.\)
lop8. thi ap bdt nhu thanh song,
a)
VT=√25+√45<√2(25+45)=√140<√144=12=VP
b)
VT=√2013+√2015<√[2(2013+2015)]=√[4.2014]=2√(2014)=VP.
c) C=VT-VP
√2014+√2012-2√2012
kq(b)=> C<0
VT<VP
1)Tìm điều kiện để biểu thức sau có nghĩa:
A= \(\sqrt{x-2013}\)+ \(\sqrt{2014-x}\)
2) Rút gọn:
A=\(\sqrt{20}\)+ \(2\sqrt{80}\)-\(3\sqrt{45}\)
1) \(A=\sqrt{x-2013}+\sqrt{2014-x}\)
Biểu thức A có nghĩa khi 2013 < hoặc = x, x < hoặc = 2014
2) \(A=\sqrt{20}+2\sqrt{80}-3\sqrt{45}\\ A=2\sqrt{5}+8\sqrt{5}-9\sqrt{5}\\ A=\sqrt{5}\left(2+8-9\right)\\ A=\sqrt{5}\)
mấy bạn 2k2 giúp mình với mk cần gấp, thanks nhiều
Rút gọn biểu thức
a) A=\(\frac{2\left(\sqrt{5}+1\right)}{\sqrt{5}-1}-\frac{10+2\sqrt{5}}{\sqrt{5+}1}+\sqrt{5}-1\)
b) B=\(\sqrt{\left(1-\sqrt{2014}\right)^2}.\sqrt{2015+2\sqrt{2014}}\)
c) C=\(\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{2}{\sqrt{3}}.\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)