Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Ngọc Nhiên
Xem chi tiết
Đào Đức Mạnh
31 tháng 7 2015 lúc 20:53

\(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...-\frac{1}{\sqrt{2013}-\sqrt{2014}}+\frac{1}{\sqrt{2014}-\sqrt{2015}}\)

\(=\frac{\sqrt{2}+\sqrt{3}}{2-3}-\frac{\sqrt{3}+\sqrt{4}}{3-4}+...+\frac{\sqrt{2014}+\sqrt{2015}}{2014-2015}\)

\(=-\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{3}+\sqrt{4}-\left(\sqrt{4}+\sqrt{5}\right)+...+\sqrt{2014}+\sqrt{2015}\)

=\(-\sqrt{2}+\sqrt{2015}\)

Dương Thanh Ngân
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 10 2016 lúc 20:41

Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014

Văn Đức Kiên
15 tháng 10 2016 lúc 20:40

ki+e

n ejmfjnhcy

Lê Thụy Sĩ
Xem chi tiết
Rin Trương
20 tháng 7 2018 lúc 16:46

\(A=\frac{\left(2\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\sqrt{5}+2\right)\left(\sqrt{5}+1\right)-\left(10+2\sqrt{5}\right)\left(\sqrt{5}-1\right)}{5-1}-1\)

\(=\frac{10+2\sqrt{5}+2\sqrt{5}+2-10\sqrt{5}+10-10+2\sqrt{5}}{4}-1\)

\(=\frac{12-4\sqrt{5}}{4}-1\)

\(=\frac{4\left(3-\sqrt{5}\right)}{4}-1\)

\(=3-\sqrt{5}-1\)

\(=2-\sqrt{5}\) 

(còn biểu thức B hình như sai đề, bạn coi lại đề)

Lê Thụy Sĩ
23 tháng 7 2018 lúc 14:42

đề câu B nè : \(B=\sqrt{\left(1-\sqrt{2014}\right)^2}.\sqrt{2015+2\sqrt{2014}}\)

Rin Trương
23 tháng 7 2018 lúc 15:52

\(B=\sqrt{\left(1-\sqrt{2014}\right)^2}\sqrt{2015+2\sqrt{2014}}\)

     \(=|1-\sqrt{2014}|.\sqrt{2014+2\sqrt{2014}+1}\) ( thừa số phía sau mình p/tích thành hằng đẳng thức)

       \(=\left(\sqrt{2014}-1\right).\sqrt{|\sqrt{2014}+1|}\)(vì 1- căn của 2014 <0)

        \(=\left(\sqrt{2014}-1\right).\left(\sqrt{2014}+1\right)\)

         \(=2014+\sqrt{2014}-\sqrt{2014}-1\)

           = 2013

       

Sky Mtp Hồng Anh
Xem chi tiết
Le Nguyen Tuan Long
Xem chi tiết
Trần Đức Thắng
29 tháng 6 2015 lúc 21:17

\(\frac{1}{1+\text{ }\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2014}+\sqrt{2015}}\)

\(=\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+..+\frac{\sqrt{2014}-\sqrt{2015}}{\left(\sqrt{2014}+\sqrt{2015}\right)\left(\sqrt{2014}-\sqrt{2015}\right)}\)

\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{2014}-\sqrt{2015}}{2014-2015}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2005}-\sqrt{2004}=\sqrt{2005}-1\)

Ghost Rider
29 tháng 6 2015 lúc 21:19

dangj tổng quát : cmr :\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n}-\sqrt{n+1}\left(\right)dùngtrụccăthứcởmẫu\left(\right)\)

Xin giấu tên
Xem chi tiết
Tùng Trần Sơn
7 tháng 6 2018 lúc 12:57

a) Có \(\sqrt{25}=5;\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{25}+\sqrt{45}< 5+7=12\)

Vậy \(\sqrt{25}+\sqrt{45}< 12.\)

b) có \(\left(\sqrt{2013}+\sqrt{2015}\right)^2=2013+2015+2\sqrt{2013}.\sqrt{2015}\)\(=4028+2\sqrt{2013.2015}\)

\(\left(2\sqrt{2014}\right)^2=4.2014=4028+2.2014=4028+2\sqrt{2014^2}\)

Xét \(2014^2-2013.2015=2014.\left(2013+1\right)-2013\left(2014+1\right)\)

\(=2013.2014+2014-2013.2014-2013=1>0\)

\(\Rightarrow2\sqrt{2013.2015}< 2\sqrt{2014^2}\)

Hay \(\left(\sqrt{2013}+\sqrt{2015}\right)^2< \left(2\sqrt{2014}\right)^2\)

\(\Rightarrow\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}\)
Vậy \(\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}.\)

c) Có \(\left(\sqrt{2014}-\sqrt{2013}\right)\left(\sqrt{2014}+\sqrt{2013}\right)=2014-2013=1\)\(\rightarrow\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)

\(\sqrt{2014}>\sqrt{2013};\sqrt{2013}>\sqrt{2012}\)

\(\rightarrow\sqrt{2014}+\sqrt{2013}>\sqrt{2013}+\sqrt{2012}\)

Hay \(\dfrac{1}{\sqrt{2014}+\sqrt{2013}}< \dfrac{1}{\sqrt{2013}+\sqrt{2012}}\)

Tương tự, ta có \(\dfrac{1}{\sqrt{2013}+\sqrt{2012}}=\sqrt{2013}-\sqrt{2012}\)

\(\Rightarrow\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}\)

Vậy \(\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}.\)

ngonhuminh
7 tháng 6 2018 lúc 15:11

lop8. thi ap bdt nhu thanh song,

a)

VT=√25+√45<√2(25+45)=√140<√144=12=VP

b)

VT=√2013+√2015<√[2(2013+2015)]=√[4.2014]=2√(2014)=VP.

c) C=VT-VP

√2014+√2012-2√2012

kq(b)=> C<0

VT<VP

phuong Nguyen
Xem chi tiết
Lê Quốc Anh
5 tháng 7 2018 lúc 22:19

1) \(A=\sqrt{x-2013}+\sqrt{2014-x}\)

Biểu thức A có nghĩa khi 2013 < hoặc = x, x < hoặc = 2014

2) \(A=\sqrt{20}+2\sqrt{80}-3\sqrt{45}\\ A=2\sqrt{5}+8\sqrt{5}-9\sqrt{5}\\ A=\sqrt{5}\left(2+8-9\right)\\ A=\sqrt{5}\)

Nguyễn Đức Hạnh Nhân
Xem chi tiết