cho a, b, c là các số thực dương thỏa mãn a + b + c =1
Tìm MaxM= \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)
cho các số thực không âm a , b , c ( a khác b ) thỏa mãn (a+c)(b+c)=1
Tìm min A \(\dfrac{1}{\left(a-b\right)^2}\)+\(\dfrac{1}{\left(a+c\right)^2}\)+\(\dfrac{1}{\left(b+c\right)^2}\)
Đặt \(\left\{{}\begin{matrix}a+c=x>0\\b+c=y>0\end{matrix}\right.\) \(\Rightarrow xy=1\)
\(A=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}\)
\(=\dfrac{1}{\left(x-y\right)^2}+x^2+y^2-2xy+2xy\)
\(=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2}}+2=4\)
Cho các số thực dương a,b,c thỏa mãn a + b + c = 1
Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{9}{\left(ab+bc+ca\right)}+\dfrac{2}{a^2+b^2+c^2}.\)
\(P=\dfrac{9}{ab+bc+ca}+\dfrac{2}{a^2+b^2+c^2}\)
\(=2\left[\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}\right]+\dfrac{5}{ab+bc+ca}\)
\(\ge2.\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{5}{ab+bc+ca}\)
\(=\dfrac{18}{1}+\dfrac{5}{ab+bc+ca}\ge18+5.\dfrac{3}{\left(a+b+c\right)^2}=18+15=33\)
Đẳng thức xảy ra khi a=b=c=1/3.
Vậy GTNN của P là 33.
Cho các số thực dương a,b,c thỏa mãn a+b+c=1
Tìm giá trị nhỏ nhất của biểu thức :\(P=\dfrac{9}{2\left(ab+bc+ca\right)}+\dfrac{2}{a^2+b^2+c^2}\)
áp dụng bất đẳng thức phụ \(\dfrac{1}{a}+\dfrac{1}{b}\)≥\(\dfrac{4}{a+b}\)<=>(a-b)2≥0 (luôn đúng)
Ta có P≥\(\dfrac{\left(3+\sqrt{2}\right)^2}{\left(a+b+c\right)^2}\)=(3+\(\sqrt{2}\))2
Dấu = xảy ra <=> a=b=c=1/3
Cho các số thực dương a,b,c thỏa mãn a + b + c = 1
Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{9}{2\left(ab+bc+ac\right)}+\dfrac{2}{a^2+b^2+c^2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=2(\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2})+\frac{1}{2(ab+bc+ac)}\\
\geq 2.\frac{9}{2(ab+bc+ac)+a^2+b^2+c^2}+\frac{1}{2(ab+bc+ac)}\\
=\frac{18}{(a+b+c)^2}+\frac{1}{2(ab+bc+ac)}\\
=18+\frac{1}{2(ab+bc+ac)}\)
Áp dụng BĐT AM-GM:
$2(ab+bc+ac)\leq 2.\frac{(a+b+c)^2}{3}=\frac{2}{3}$
$\Rightarrow \frac{1}{2(ab+bc+ac)}\geq \frac{3}{2}$
$\Rightarrow P\geq 18+\frac{3}{2}=\frac{39}{2}$
Vậậy $P_{\min}=\frac{39}{2}$ khi $a=b=c=\frac{1}{3}$
a,b,c là các số thực dương thỏa mãn a+b+c=3. CMR: \(\dfrac{a\left(a+bc\right)^2}{b\left(ab+2c^2\right)}+\dfrac{b\left(b+ca\right)^2}{c\left(bc+2a^2\right)}+\dfrac{c\left(c+ab\right)^2}{a\left(ca+2b^2\right)}>=4\)
Trước hết theo BĐT Schur bậc 3 ta có:
\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)
\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)
Áp dụng (1):
\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3 tìm GTLN của \(\dfrac{1}{\left(a+b\right)^2+c^2}+\dfrac{1}{\left(b+c\right)^2+a^2}+\dfrac{1}{\left(a+c\right)^2+b^2}\)
cho a;b;c là các số thực dương thỏa mãn a+b+c=3.CMR:\(\frac{a}{1+\left(b+c\right)^2}+\frac{b}{1+\left(c+a\right)^2}+\frac{c}{1+\left(a+b\right)^2}\le\frac{3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2+12abc}\)
bài này mà giải theo SOS là hơi bị tuyệt vời nhé =)))
Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1
Chứng minh rằng : \(P=\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(b+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge1\)
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có ít nhất 2 số cùng phía so với 1
Không mất tính tổng quát, giả sử đó là a và b
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow ab+1\ge a+b\)
\(\Leftrightarrow2\left(ab+1\right)\ge\left(a+1\right)\left(b+1\right)\)
\(\Rightarrow\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{2}{2\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(\dfrac{1}{c}+1\right)\left(c+1\right)}=\dfrac{c}{\left(c+1\right)^2}\)
Lại có:
\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(\dfrac{a}{b}+1\right)}+\dfrac{1}{\left(ab+1\right)\left(\dfrac{b}{a}+1\right)}=\dfrac{1}{ab+1}\)
\(\Rightarrow P\ge\dfrac{1}{ab+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}=\dfrac{1}{\dfrac{1}{c}+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}\)
\(\Rightarrow P\ge\dfrac{c}{c+1}+\dfrac{c+1}{\left(c+1\right)^2}=\dfrac{c\left(c+1\right)+c+1}{\left(c+1\right)^2}=\dfrac{\left(c+1\right)^2}{\left(c+1\right)^2}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Với a, b, c là những số thực dương thỏa mãn \(\left(a+b\right)\left(b+c\right)\)\(\left(c+a\right)\)=1
Chứng minh rằng \(\dfrac{a}{b\left(b+2c\right)^2}\)+\(\dfrac{b}{c\left(c+2a\right)^2}\)+\(\dfrac{c}{a\left(a+2b\right)^2}\)≥\(\dfrac{4}{3}\)