Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tống Cao Sơn
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2023 lúc 20:35

Đặt \(\left\{{}\begin{matrix}a+c=x>0\\b+c=y>0\end{matrix}\right.\) \(\Rightarrow xy=1\)

\(A=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}\)

\(=\dfrac{1}{\left(x-y\right)^2}+x^2+y^2-2xy+2xy\)

\(=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2}}+2=4\)

trần vũ hoàng phúc
Xem chi tiết
Trần Tuấn Hoàng
26 tháng 12 2023 lúc 21:00

\(P=\dfrac{9}{ab+bc+ca}+\dfrac{2}{a^2+b^2+c^2}\)

\(=2\left[\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}\right]+\dfrac{5}{ab+bc+ca}\)

\(\ge2.\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{5}{ab+bc+ca}\)

\(=\dfrac{18}{1}+\dfrac{5}{ab+bc+ca}\ge18+5.\dfrac{3}{\left(a+b+c\right)^2}=18+15=33\)

Đẳng thức xảy ra khi a=b=c=1/3.

Vậy GTNN của P là 33.

trần vũ hoàng phúc
Xem chi tiết
blua
1 tháng 1 lúc 15:54

áp dụng bất đẳng thức phụ \(\dfrac{1}{a}+\dfrac{1}{b}\)\(\dfrac{4}{a+b}\)<=>(a-b)2≥0 (luôn đúng)
Ta có P≥\(\dfrac{\left(3+\sqrt{2}\right)^2}{\left(a+b+c\right)^2}\)=(3+\(\sqrt{2}\))2
Dấu = xảy ra <=> a=b=c=1/3

trần vũ hoàng phúc
Xem chi tiết
Akai Haruma
5 tháng 2 lúc 18:13

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=2(\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2})+\frac{1}{2(ab+bc+ac)}\\ \geq 2.\frac{9}{2(ab+bc+ac)+a^2+b^2+c^2}+\frac{1}{2(ab+bc+ac)}\\ =\frac{18}{(a+b+c)^2}+\frac{1}{2(ab+bc+ac)}\\ =18+\frac{1}{2(ab+bc+ac)}\)

Áp dụng BĐT AM-GM:

$2(ab+bc+ac)\leq 2.\frac{(a+b+c)^2}{3}=\frac{2}{3}$

$\Rightarrow \frac{1}{2(ab+bc+ac)}\geq \frac{3}{2}$

$\Rightarrow P\geq 18+\frac{3}{2}=\frac{39}{2}$
Vậậy $P_{\min}=\frac{39}{2}$ khi $a=b=c=\frac{1}{3}$

Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 22:38

Trước hết theo BĐT Schur bậc 3 ta có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)

\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

Áp dụng (1):

\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Thắng Nguyễn
8 tháng 8 2017 lúc 17:18

bài này mà giải theo SOS là hơi bị tuyệt vời nhé =)))

tuan pham anh
8 tháng 8 2017 lúc 17:21

em moi co lop 7

Đỗ Thị Mai Anh
8 tháng 8 2017 lúc 20:34

em mới có lớp 6 thôi mà

Gallavich
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2021 lúc 6:25

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có ít nhất 2 số cùng phía so với 1

Không mất tính tổng quát, giả sử đó là a và b

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow2\left(ab+1\right)\ge\left(a+1\right)\left(b+1\right)\)

\(\Rightarrow\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{2}{2\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(\dfrac{1}{c}+1\right)\left(c+1\right)}=\dfrac{c}{\left(c+1\right)^2}\)

Lại có:

\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(\dfrac{a}{b}+1\right)}+\dfrac{1}{\left(ab+1\right)\left(\dfrac{b}{a}+1\right)}=\dfrac{1}{ab+1}\)

\(\Rightarrow P\ge\dfrac{1}{ab+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}=\dfrac{1}{\dfrac{1}{c}+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}\)

\(\Rightarrow P\ge\dfrac{c}{c+1}+\dfrac{c+1}{\left(c+1\right)^2}=\dfrac{c\left(c+1\right)+c+1}{\left(c+1\right)^2}=\dfrac{\left(c+1\right)^2}{\left(c+1\right)^2}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

tnt
Xem chi tiết