Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen le duy hung
Xem chi tiết
Không Tên
11 tháng 7 2018 lúc 20:04

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

êfe
Xem chi tiết
Trần Hà Trang
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
20 tháng 7 2020 lúc 10:50

\(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}+\frac{x-1}{3+x}\right)\div\left(1-\frac{1}{x+3}\right)\)

\(B=\left(\frac{21}{x^2-9}+\frac{x-4}{x-3}+\frac{x-1}{x+3}\right)\div\left(\frac{x+3}{x+3}-\frac{1}{x+3}\right)\)

\(B=\left(\frac{21}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right)\div\frac{x+2}{x+3}\)

\(B=\left(\frac{21}{\left(x+3\right)\left(x-3\right)}+\frac{x^2-x-12}{\left(x+3\right)\left(x-3\right)}+\frac{x^2-4x+3}{\left(x+3\right)\left(x-3\right)}\right)\cdot\frac{x+3}{x+2}\)

\(B=\left(\frac{21+x^2-x-12+x^2-4x+3}{\left(x+3\right)\left(x-3\right)}\right)\cdot\frac{x+3}{x+2}\)

\(B=\frac{2x^2-5x+12}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{\left(x+2\right)}\)

\(B=\frac{2x^2-5x+12}{\left(x-3\right)\left(x+2\right)}\)

\(B=\frac{2x^2-5x+12}{x^2-x-6}\)

Đến đây là chịu ạ :(

Khách vãng lai đã xóa
Lê Thị Uyển Nhi
Xem chi tiết
Hot boy 2k5
Xem chi tiết
Blue Moon
27 tháng 10 2018 lúc 21:27

a) \(\left(x-1\right)^2-\left(x-2\right)\left(x+2\right)=x^2-2x+1-x^2+4=5-2x\)

mình nghĩ là câu b bạn ghi đề sai vì như thế không có hằng đẳng thức nhé

b)\(\left(x^2+\frac{1}{3}x+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3=x^3-\frac{1}{27}-x^3+\frac{1}{27}+x^2-\frac{1}{3}x=x^2-\frac{1}{3}x\)

mo chi mo ni
27 tháng 10 2018 lúc 21:37

b,\(\left(x^2+\frac{1}{x}+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3\)

\(=\)\(\left(x-\frac{1}{3}\right)\left[\left(x^2+\frac{1}{x}+\frac{1}{9}\right)-\left(x-\frac{1}{3}\right)^2\right]\)

\(=\)\(\left(x-\frac{1}{3}\right)\left(x^2+\frac{1}{x}+\frac{1}{9}-x^2+\frac{2}{3}x-\frac{1}{9}\right)\)

\(=\left(x-\frac{1}{3}\right)\left(\frac{1}{x}+\frac{2}{3}x\right)\) \(=1+\frac{2}{3}x^2-\frac{1}{3x}-\frac{2}{9}x\)

tae tae
27 tháng 10 2018 lúc 21:45

a) (x-1)^2-(x-2)(x+2)=(x-1)^2-(x^2-4)=x^2-2x+1-x^2+4=-2x+5

b) (x^2+1/x+1/9)(x-1/3)-(x-1/3)^3=(x^3-1/27)-(x-1/3)^3=x^3-1/27-(x^3-3x^2*1/3+3x*1/9-1/27)

=x^3-1/27-x^3+x^2-1/2x+1/27=x^2-1/2x

jack son
Xem chi tiết
Trịnh Thành Công
9 tháng 5 2017 lúc 19:28

\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{-\left(x-3\right)}{x+3}.\frac{\left(x+3^2\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(-1+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{-x-3+x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(-\frac{3}{x+3}\right).\frac{x+3}{3x^2}\)

\(A=-x^2\)

Nguyễn Diệu Linh
Xem chi tiết
Binh Thien
Xem chi tiết
Binh Thien
20 tháng 7 2017 lúc 19:46

b, tìm x thuộc Z để B thuộc Z

c, Tìm x thuộc R để B có giá trị nguyên

Minh Nguyen
7 tháng 3 2020 lúc 13:35

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

a) \(B=\left(1-\frac{x-3\sqrt{x}}{x-9}\right)\div\left(\frac{x-9}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(\Leftrightarrow B=\left(1-\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{x-9-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow B=\left(1-\frac{\sqrt{x}}{\sqrt{x}+3}\right):\frac{x-9-x+9+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow B=\frac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}:\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow B=\frac{3}{\sqrt{x}+3}:\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow B=\frac{3}{\sqrt{x}+3}:\frac{\sqrt{x}+2}{\sqrt{x}+3}\)

\(\Leftrightarrow B=\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow B=\frac{3}{\sqrt{x}+2}\)

b) ??

Khách vãng lai đã xóa
Minh Nguyen
7 tháng 3 2020 lúc 13:39

b) Để \(B\inℤ\)

\(\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{1\right\}\)(Loại các giá trị âm)

\(\Leftrightarrow x=1\)

Khách vãng lai đã xóa
Quynh Existn
Xem chi tiết
Nguyễn Huy Tú
21 tháng 7 2021 lúc 19:00

undefined