\(A=\left(\frac{x^2-3}{x^2-9}+\frac{1}{x-3}\right):\frac{x}{x+3}\)
rút gọn A
Bài 1:Rút gọn
\(a,\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(b,\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(c,\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)\times\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\left(a\ne1;a\ge0\right)\)
Bài 2: Rút gọn biểu thức
\(P=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
Rút gọn biểu thức sau: A=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+4\right)\left(3-x\right)}\)
B = \(\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}+\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
a. Rút gọn B
\(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}+\frac{x-1}{3+x}\right)\div\left(1-\frac{1}{x+3}\right)\)
\(B=\left(\frac{21}{x^2-9}+\frac{x-4}{x-3}+\frac{x-1}{x+3}\right)\div\left(\frac{x+3}{x+3}-\frac{1}{x+3}\right)\)
\(B=\left(\frac{21}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right)\div\frac{x+2}{x+3}\)
\(B=\left(\frac{21}{\left(x+3\right)\left(x-3\right)}+\frac{x^2-x-12}{\left(x+3\right)\left(x-3\right)}+\frac{x^2-4x+3}{\left(x+3\right)\left(x-3\right)}\right)\cdot\frac{x+3}{x+2}\)
\(B=\left(\frac{21+x^2-x-12+x^2-4x+3}{\left(x+3\right)\left(x-3\right)}\right)\cdot\frac{x+3}{x+2}\)
\(B=\frac{2x^2-5x+12}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{\left(x+2\right)}\)
\(B=\frac{2x^2-5x+12}{\left(x-3\right)\left(x+2\right)}\)
\(B=\frac{2x^2-5x+12}{x^2-x-6}\)
Đến đây là chịu ạ :(
Rút gọn A khi A = \(\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right]:\left[\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right]\)
Rút gọn bằng cách dùng hđt :
a) \(\left(x-1\right)^2-\left(x-2\right)\left(x+2\right)\)
b) \(\left(x^2+\frac{1}{x}+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3\)
a) \(\left(x-1\right)^2-\left(x-2\right)\left(x+2\right)=x^2-2x+1-x^2+4=5-2x\)
mình nghĩ là câu b bạn ghi đề sai vì như thế không có hằng đẳng thức nhé
b)\(\left(x^2+\frac{1}{3}x+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3=x^3-\frac{1}{27}-x^3+\frac{1}{27}+x^2-\frac{1}{3}x=x^2-\frac{1}{3}x\)
b,\(\left(x^2+\frac{1}{x}+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3\)
\(=\)\(\left(x-\frac{1}{3}\right)\left[\left(x^2+\frac{1}{x}+\frac{1}{9}\right)-\left(x-\frac{1}{3}\right)^2\right]\)
\(=\)\(\left(x-\frac{1}{3}\right)\left(x^2+\frac{1}{x}+\frac{1}{9}-x^2+\frac{2}{3}x-\frac{1}{9}\right)\)
\(=\left(x-\frac{1}{3}\right)\left(\frac{1}{x}+\frac{2}{3}x\right)\) \(=1+\frac{2}{3}x^2-\frac{1}{3x}-\frac{2}{9}x\)
a) (x-1)^2-(x-2)(x+2)=(x-1)^2-(x^2-4)=x^2-2x+1-x^2+4=-2x+5
b) (x^2+1/x+1/9)(x-1/3)-(x-1/3)^3=(x^3-1/27)-(x-1/3)^3=x^3-1/27-(x^3-3x^2*1/3+3x*1/9-1/27)
=x^3-1/27-x^3+x^2-1/2x+1/27=x^2-1/2x
A=\(\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
rút gọn A
\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{-\left(x-3\right)}{x+3}.\frac{\left(x+3^2\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(-1+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{-x-3+x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(-\frac{3}{x+3}\right).\frac{x+3}{3x^2}\)
\(A=-x^2\)
1. Cho biểu thức :
\(A=\left[\frac{x+3}{\left(x-3\right)^2}+\frac{6}{x^2-9}-\frac{x-3}{\left(x+3\right)^2}\right].\left[1:\left(\frac{24x^2}{x^4-81}-\frac{12}{x^2+9}\right)\right]\)
a) Rút gọn biểu thức A
b) Tìm x để A=1
c) Tinh giá trị của A khi x = \(\frac{-1}{3}\)
d) Tìm x để A> 0 ; A<0
B=\(\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{x-9}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
a, Rút gọn B
b,
b, tìm x thuộc Z để B thuộc Z
c, Tìm x thuộc R để B có giá trị nguyên
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
a) \(B=\left(1-\frac{x-3\sqrt{x}}{x-9}\right)\div\left(\frac{x-9}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
\(\Leftrightarrow B=\left(1-\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{x-9-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow B=\left(1-\frac{\sqrt{x}}{\sqrt{x}+3}\right):\frac{x-9-x+9+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow B=\frac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}:\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow B=\frac{3}{\sqrt{x}+3}:\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow B=\frac{3}{\sqrt{x}+3}:\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
\(\Leftrightarrow B=\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow B=\frac{3}{\sqrt{x}+2}\)
b) ??
b) Để \(B\inℤ\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1\right\}\)(Loại các giá trị âm)
\(\Leftrightarrow x=1\)
Rút gọn các biểu thức sau:
\(D=\left(\frac{5\sqrt{x-6}}{x-9}-\frac{2}{\sqrt{x}+3}\right):\left(1+\frac{6}{x-9}\right)\)
\(E=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)