Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mông Thanh Tùng
Xem chi tiết
Akai Haruma
25 tháng 10 2024 lúc 23:11

Lời giải:

$A=a^5b-ab^5=ab(a^4-b^4)=ab(a^2-b^2)(a^2+b^2)$

Nếu $a,b$ khác tính chẵn lẻ thì hiển nhiên 1 trong 2 số là số chẵn, 

$\Rightarrow ab\vdots 2\Rightarrow A\vdots 2$

Nếu $a,b$ cùng tính chẵn lẻ thì $a^2-b^2\vdots 2$

$\Rightarrow A\vdots 2$

Vậy tóm lại $A\vdots 2(1)$

Lại có:
Nếu ít nhất 1 trong 2 số $a,b$ chia hết cho 3 thì hiển nhiên $A\vdots 3$.

Nếu cả 2 số $a,b$ đều không chia hết cho 3. Ta biết 1 scp khi chia 3 dư 0 hoặc 1. Mà $a,b$ không chia hết cho 3 nên $a^2,b^2$ chia 3 dư 1.

$\Rightarrow a^2-b^2\equiv 1-1\equiv 0\pmod 3$
$\Rightarrow A\vdots 3$

Vậy $A\vdots 3(2)$

Xét tính chia hết cho 5

Nếu 1 trong 2 số $a,b$ chia hết cho 5 thì hiển nhiên $A\vdots 5$

Nếu cả 2 số đều không chia hết cho 5. 

Ta biết 1 scp khi chia 5 dư 0,1,4. Vì $a,b$ không chia hết cho 5 nên $a^2,b^2$ chia 5 dư 1 hoặc 4.

TH $a^2,b^2$ cùng dư 1 hoặc cùng dư 4 khi chia 5 thì $a^2-b^2\vdots 5\Rightarrow A\vdots 5$

TH $a^2,b^2$ khác dư, tức là 1 số chia 5 dư 1 còn 1 số chia 5 dư 4

$\Rightarrow a^2+b^2\equiv 1+4\equiv 5\equiv 0\pmod 5$

$\Rightarrow A\vdots 5$

Vậy tóm lại $A\vdots 5(3)$

Từ $(1); (2); (3)$ mà $2,3,5$ đôi một nguyên tố cùng nhau nên $A\vdots (2.3.5)$ hay $A\vdots 30$

Nguyễn Ngô Gia Hân
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Nhuyễn Hồng Nhung
Xem chi tiết
nguyen phuoc thinh
Xem chi tiết
lê trần minh quân
Xem chi tiết
Lê Thị Mai Phương
Xem chi tiết
Pé Ròm
Xem chi tiết
Mai Anh
Xem chi tiết
Bùi Minh Anh
11 tháng 12 2017 lúc 21:29

5, a,

Ta có ƯCLN(a,b)=6 \(\Rightarrow\hept{\begin{cases}a_1.6=a\\b_1.6=b\end{cases}}\) với (a1;b1) = 1 

=> a+b = a1.6+b1.6 = 6(a1+b1) = 72

=> a1+b1 = 12 = 1+11=2+10=3+9=4+8=5+7=6+6 (hoán vị của chúng)

Vì (a1,b1) = 1

=> a1+b1 = 1+11=5+7

* Với a1+b1 = 1+11

+) TH1: a1 = 1; b1=11 => a =6 và b = 66

+) TH2: a1=11; b1=1 => a=66 và b = 6

* Với a1+b= 5+7

+)TH1: a1=5 ; b1=7 => a=30 và b=42

+)TH2: a1=7;b1=5 => a=42 và b=30

Vậy.......