Cho hpt sau:
\(\hept{\begin{cases}3x+my=5\\mx-y=1\end{cases}}\)
CM hệ có nghiệm duy nhất với mọi m
Cho hệ PT \(\hept{\begin{cases}mx-y=2\\3x+my=5\end{cases}}\)
a) Giair hệ PT khi m = -1
b) Tìm m đề HPT có nghiệm duy nhất thỏa mãn x + y = 1 - \(\frac{m^2}{m^2+3}\)
Cho \(\hept{\begin{cases}mx-y=2\\3x+my=5\end{cases}}\)Tìm m để Hpt có nghiệm duy nhất (x;y) biết \(x+y=1-\frac{m^2}{m^2+3}\)
toi khong biet ma cac cau thay anh nen kieu nao vay
\(\hept{\begin{cases}3x-my=-9\\mx+2y=16\end{cases}}\)
a) HPT luôn có nghiệm duy nhất với mọi m
b) định m để (x;y)=(1,4;6,6)
c) với giá trị nào của m để (x;y) thỏa mãn x+y=7
dùng pp thế đỡ biện luận nhiều
từ (2)=> y=(16-mx)/2 thế vào (1)
\(3x-m\left(\frac{16-mx}{2}\right)=-9\Leftrightarrow\left(m^2+6\right)x=16m-18\)
\(x=\frac{16m-18}{m^2+6}\)\(\Rightarrow y=16-\frac{m\left(16m-18\right)}{m^2+6}=\frac{18m+16.6}{m^2+6}\)
a) vì m^2+6 khác 0 mọi m => hệ có nghiệm duy nhất với mọi m
b)
\(\hept{\begin{cases}x=1,4\\y=6,6\end{cases}\Rightarrow m}\)
c) x+y=7=> \(\frac{16m-18+18m+16.6}{m^2+6}=7\Rightarrow m\)
Cho hệ phương trình\(\hept{\begin{cases}-2mx+y=5\\mx+3y=1\end{cases}}\)
Tìm m để hpt có nghiệm duy nhất thỏa mãn x-y=2
Hệ phương trình: \(\hept{\begin{cases}-2mx+y=5\\mx+3y=1\end{cases}}\)
Với \(m\ne0\)hệ phương trình có 2 nghiệm riêng biệt là \(x=-\frac{2}{m};y=1\)
Để hệ phương trình có nghiệm duy nyaats thỏa mãn x - y = 2 thì
\(-\frac{2}{m}-1=2\Rightarrow-\frac{2}{m}=1+2=3\)
\(\Rightarrow3m=-2.1\Rightarrow m=-\frac{2}{3}\left(TMĐKx\ne0\right)\)
Vậy ...........................
1. Cho hệ pt: \(\hept{\begin{cases}x-my=1\\mx+y=1\end{cases}}\)
Chứng tỏ rằng hệ phương trình trên luôn có nghiệm duy nhất (x;y) với mọi nghiệm đó theo m.
\(\hept{\begin{cases}x-my=1\\mx+y=1\end{cases}}\)
<=> \(\hept{\begin{cases}mx-m^2y=m\\mx+y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x-my=1\\\left(1+m^2\right)y=1-m\end{cases}}\)
<=> \(\hept{\begin{cases}x=1+my\\y=\frac{1-m}{m^2+1}\end{cases}}\)
<=> \(\hept{\begin{cases}x=1+m.\frac{1-m}{m^2+1}=\frac{1+m}{m^2+1}\\y=\frac{1-m}{m^2+1}\end{cases}}\)
Vậy với mọi m hệ luôn có nghiệm duy nhất.
Cho hệ phương trình
\(\hept{\begin{cases}mx+3y=1\\my-2x=5\end{cases}}\)
CMR phương trình có nghiệm duy nhất với mọi m
Hệ phương trình có nghiệm duy nhất khi \(\frac{3}{m}\ne\frac{m}{-1}\)
\(\Leftrightarrow m^2\ne-3\forall m\)
Vậy hpt luôn có nguyên duy nhất với mọi m
bảo ngọc đàm đg
Tìm m để hệ phương trình sau có nghiệm duy nhất:
a,\(\hept{\begin{cases}2x+3y=-1\\mx-y=3+3m\end{cases}}\) b,\(\hept{\begin{cases}mx+3y=-m\\3x+my=3\end{cases}}\) c,\(\hept{\begin{cases}mx+3y=-1+2m\\2mx+my=3\end{cases}}\)
Cho HPT \(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}}\)
Tìm số nguyên m để hệ có nghiệm duy nhất ( x ; y ) mà x và y là các số nguyên
Để pt trên có nghiệm duy nhất thì ĐK là:
\(\frac{1}{m}\ne\frac{m}{-2}\)
\(\Leftrightarrow m^2\ne-2\left(luondung\right)\)
chắc vậy
là sao Nguyenx công tỉnh
chả hiểu
cái này ko giải hẹ à
\(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2-my\\m\left(2-my\right)-2y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2-my\\2m-m^2y-2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2-my\\-y\left(m^2+2\right)=1-2m\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2+\frac{-2m^2+m}{m^2+2}\\y=\frac{2m-1}{m^2+2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2m^2+4-2m^2+m}{m^2+2}\\y=\frac{2m-1}{m^2+2}\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=\frac{4+m}{m^2+2}\\y=\frac{2m-1}{m^2+2}\end{cases}}\)
Cho hệ PT \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
a, giải hpt khi m= -1
b, tìm m để hpt vô nghiệm
c, tìm m để hpt có nghiệm duy nhất (x,y) thỏa mãn \(2x-3y=1\)
a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)
=> HPT vô nghiệm
b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )
HPT vô nghiệm
<=> ( * ) vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)
<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2
<=> m = -1