TÍNH
S + \(\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)
Tìm S =\(\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)
S = \(\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)
S = 1/9 + 1/45 + 1/105 + 1/189 + 1/297
=> S = 1/2 ( 6/27 + 6/135 + 6/315 + 6/567 + 6/891 )
=> S = 1/2 ( 6/3.9 + 6/9.15 + 6/15.21 + 6/21.27 + 6/27.33 )
=> S = 1/2 ( 1/3 - 1/9 + 1/9 - 1/15 + ... + 1/27 - 1/33 )
=> S = 1/2 ( 1/3 - 1/33 )
=> S = 1/2 . 10/33
=> S = 5/33
\(S=\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)
\(S=\frac{1}{1.9}+\frac{1}{9.5}+\frac{1}{5.21}+\frac{1}{21.9}+\frac{1}{9.33}\)
\(5S=\frac{5}{1.9}+\frac{5}{9.5}+\frac{5}{5.21}+\frac{5}{21.9}+\frac{5}{9.33}\)
\(5S=1-\frac{1}{9}+\frac{1}{9}-\frac{1}{5}+\frac{1}{5}+\frac{1}{21}+\frac{1}{21}-\frac{1}{9}+\frac{1}{9}-\frac{1}{33}\)
\(5S=1-\frac{1}{33}\)
\(5S=\frac{32}{33}\)
\(S=\frac{32}{33}:5\)
\(S=\frac{32}{165}\)
Cậu Bé Tiến Pro sai rồi nhé!
\(\frac{5}{1.9}=1-\frac{1}{9}\Leftrightarrow9-1=5\)
-.-
P=\(1+\frac{9}{45}+\frac{9}{105}+\frac{9}{189}+.........+\frac{9}{29997}\)
#)Giải :
\(P=1+\frac{9}{45}+\frac{9}{105}+\frac{9}{189}+...+\frac{9}{29997}\)
\(P=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(P=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101} \right)\)
\(P=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(P=\frac{3}{2}\left(1-\frac{1}{101}\right)\)
\(P=\frac{3}{2}\times\frac{100}{101}\)
\(P=\frac{150}{101}\)
trả lời
=150/101
chúc bn
hc tốt
trả lời
=150/101
chúc bn
hc tốt
Tính nhanh tổng sau :
\(B=1+\frac{9}{45}+\frac{9}{105}+\frac{9}{189}+...+\frac{9}{29997}\)
\(B=1+\frac{3}{5}+\frac{3}{35}+\frac{3}{55}+.....+\frac{3}{9999}\)
\(B=\frac{3}{1}.3+\frac{3}{3}.5+\frac{3}{5}.7+......+\frac{3}{99}.101\)
\(B=\frac{3}{2}\left(\frac{2}{1}.3+\frac{2}{3}.5+.......+\frac{3}{99}.101\right)\)
\(B=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.........+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=\frac{3}{2}\left(1-\frac{1}{101}\right)\)
\(B=\frac{3}{2}.\frac{100}{101}\)
\(B=\frac{150}{101}\)
Tính:
A=\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{48\cdot49\cdot50}\)
B=\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{1024}\right)\)
C=\(4\cdot5^{100}\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)\)
D=\(1+\frac{9}{45}+\frac{9}{105}+\frac{9}{189}+\frac{9}{29997}\)
Không cần làm hết cũng đc, giúp tớ nha
bạn tách ra xong làm cx dễ mà đây là toán 6
Cảm ơn câu trả lời thật súc tích và thật ngắn gọn của bạn
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(A=\frac{1}{2}.\frac{612}{1225}=\frac{306}{1225}\)
~ Hok tốt ~
1+\(\frac{9}{45}\)+\(\frac{9}{105}\)+\(\frac{9}{189}\)+.......+\(\frac{9}{29997}\)
tính P biết :
P= 1+ \(\frac{9}{45}\) + \(\frac{9}{105}\)+ \(\frac{9}{189}\)+ .....+\(\frac{9}{29997}\)
Tính nhanh
\(\frac{1}{15}+\frac{4}{30}+\frac{9}{45}+\frac{16}{60}+\frac{25}{75}+\frac{36}{90}+\frac{49}{105}+\frac{64}{120}+\frac{81}{135}\)
#)Giải :
\(\frac{1}{15}+\frac{4}{30}+\frac{9}{45}+\frac{16}{60}+...+\frac{81}{135}=\frac{1}{15}+\frac{2}{15}+\frac{3}{15}+...+\frac{9}{15}=\frac{45}{15}=3\)
Dễ ẹc ak :v rút gọn là ra
=(\(\frac{1}{15}\)+\(\frac{4}{30}\)+\(\frac{16}{60}\)+\(\frac{64}{120}\))+(\(\frac{9}{45}\)+\(\frac{36}{90}\))+(\(\frac{25}{75}\)+\(\frac{81}{135}\))
=(\(\frac{8}{120}\)+\(\frac{16}{120}\)+\(\frac{32}{120}\)+\(\frac{64}{120}\))+(\(\frac{18}{90}\)+\(\frac{36}{90}\))+\(\frac{14}{15}\).
=1+\(\frac{3}{5}\)+\(\frac{14}{15}\).
=\(\frac{8}{5}\)+\(\frac{14}{15}\).
=\(\frac{15}{38}\)
Tính giá trị của biểu thức :
\(A=\frac{1}{358}.\left(7+\frac{1}{297}\right)-\left(4-\frac{1}{358}\right).2.\frac{1}{297}-7.\frac{1}{358}-3.\frac{1}{297}.\frac{1}{358}\)
Ta có:
\(A=\frac{1}{358}.\left(7+\frac{1}{297}\right)-\left(4-\frac{1}{358}\right).2.\frac{1}{297}-7.\frac{1}{358}-\frac{3}{297}.\frac{1}{358}\)
\(=\frac{1}{358}.\left(7+\frac{1}{297}-7-\frac{3}{297}\right)-\left(4-\frac{1}{358}\right).\frac{2}{297}\)
\(=\frac{1}{358}.\left(-\frac{2}{297}\right)-\frac{2}{297}.\left(4-\frac{1}{358}\right)\)
\(=\left(-\frac{2}{297}\right)\left(\frac{1}{358}+4-\frac{1}{358}\right)\)
\(=\left(-\frac{2}{297}\right)\left(-4\right)\)
\(=\frac{8}{297}\)
Vậy giá trị biểu thức A là \(\frac{8}{297}\)