Giải PT : \(\left(x^2-3x\right)^2-5x^2+15x+4=0\)
Mong các bạn giúp mình bài này.
giải dùm mình mấy pt này vs !! mình chưa hc mấy pt bậc này mà thầy cho bt về nhà !! các bạn giúp mình vs !!!!
1/ \(x^3-3x^2+2=0\)
2/ \(2x^4-5x^3+6x^2-5x+2=0\)
3/ \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
4/ \(\left(x+1\right)^4+\left(x+3\right)^4=2\)
5/ \(x^5-5x^4+8x^3+8x^2-5x+1=0\)
2) pt đề bài cho=0
<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0
<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)
Từ 1 => x=1
từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)
=\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x
Nên pt 2 cô nghiệm
Vậy pt đề cho có nghiệm là 1
1) \(x^3-3x^2+2=\left(x-1\right)\left(2^2-x+2\right)=0\)
3/ x(x + 3)(x + 1)(x + 2) = 24
=> (x2 + 3x)(x2 + 3x + 2) = 24
Đặt a = x2 + 3x ta được pt: a(a + 2) = 24 => a2 + 2a - 24 = 0 => a = 4 hoặc a = -6
Với a = 4 => x2 + 3x = 4 => x2 + 3x - 4 = 0 => x = 1 hoặc a = -4Với a = -6 => x2 + 3x = -6 => x2 + 3x + 6 = 0 , mà x2 + 3x + 6 > 0 => vô nghiệmVậy x = 1 , x = -4
4/ (x + 1)4 + (x + 3)4 = 2
Đặt a = x + 2 ta được: (a - 1)4 + (a + 1)4 = 2
\(\Rightarrow\left[\left(a-1\right)^2+\left(a+1\right)^2\right]^2-2\left(a-1\right)^2\left(a+1\right)^2=2\)
\(\Rightarrow\left[\left(a-1+a+1\right)^2-2\left(a-1\right)\left(a+1\right)\right]^2-2\left(a^2-1\right)^2=0\)
\(\Rightarrow\left[\left(2a\right)^2-2\left(a^2-1\right)\right]^2-2\left(a^2-1\right)^2=0\)
\(\Rightarrow\left[4a^2-2\left(a^2-1\right)+\sqrt{2}\left(a^2-1\right)\right]\left[4a^2-2\left(a^2-1\right)-\sqrt{2}\left(a^2-1\right)\right]=0\)
\(\Rightarrow\left[\left(2+\sqrt{2}\right)a^2+2-\sqrt{2}\right]\left[\left(2-\sqrt{2}\right)a^2+2+\sqrt{2}\right]=0\)
Tới đây bạn giải ra a rồi tính ra x nha
Giải PT
a)\(8x^2-8x+3=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
b)\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
c)\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
GIẢI = CÁCH ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN
MONG CÁC BẠN GIẢI NHANH GIÚP MÌNH
câu a:
\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành
\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)
có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)
\(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)\(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)Câu b:
Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)
PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)
có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)
\(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)\(t=x\Leftrightarrow x^2=x^2+1VN\)b) phương trình đã cho nhân đôi sau đó biến đổi tương đương:
\(\left[\sqrt{x^2+1}-\left(x+3\right)\right]^2=8\)
\(\Leftrightarrow\sqrt{x^2+1}-\left(x+3\right)=\pm2\sqrt{2}\)
c) \(PT\Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}=\left(3x+2\right)^2+2\left(3x+2\right)\)
xét: \(f\left(t\right)=t^2+2t\left(t>0\right)\)
\(f\left(t\right)=2t+2>0\)
\(\Rightarrow\sqrt{\left(x+2\right)^3}=3x+2\)
Tự lm nốt nhé @tran huu dinh
M.n giúp mk giải bài này ms:
Giải pt: \(\left(x^2-5x+1\right)\left(x^2-4\right)=6\left(x-1\right)^2\)
PT đã cho \(\Leftrightarrow\left(x^2-4-5x+5\right)\left(x^2-4\right)=6\left(x-1\right)^{2
}\)
\(\Leftrightarrow\left(x^2-4-5\left(x-1\right)\right)\left(x^2-4\right)=6\left(x-1\right)^2\)(*)
ĐẶt \(x^2-4=a.\)\(x-1=b\)
PT(*) có dạng \(\left(a-5b\right)a=6b^2\Leftrightarrow a^2-5ab-6b^2=0\Leftrightarrow\left(a+b\right)\left(a-6b\right)=0\)
\(\cdot a+b=0\Leftrightarrow x^2-4+x-1=0\Leftrightarrow x^2+x-5=0\)
\(\Rightarrow x_1=\frac{-1+\sqrt{21}}{2}.x_2=\frac{-1-\sqrt{21}}{2}\)
\(.a-6b=0\Leftrightarrow x^2-4-6\left(x-1\right)=0\Leftrightarrow x^2-6x+2=0\)
\(\Rightarrow x_3=3+\sqrt{7}.x_4=3-\sqrt{7}\)
THử lại: các nghiệm trên đều thỏa mãn pt
Vậy :....
p/s : học khuya thế ==ơ
bạn còn cách nào khác giải theo sách lp9 k ????
vào lớp 10 chúc các bạn hoc gỏi toán nhe. ai học lớp 10 . giải giúp mình bài này nhe.
tìm m đẻ pt có 4 ngiệm: \(x^4-2x^3-\left(2m-1\right)x^2+2\left(m+1\right)x+m^2+m=0^{ }\)
Mọi người giải giúp mình bài này với:
B2: Giải các PT sau:
l) \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
m) \(2x\left(x-1\right)=x^2-1\)
n) \(\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
o) \(\frac{3}{7}x-1=\frac{1}{7}x\left(3x-7\right)\)
p) \(\left(x-\frac{3}{4}\right)^2+\left(x-\frac{3}{4}\right)\left(x-\frac{1}{2}\right)=0\)
q) \(\frac{1}{x}x+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)\)
r) \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
s) \(\left(x+2\right)\left(x-3\right)\left(17x^2-17x+8\right)=\left(x+2\right)\left(x-3\right)\left(x^2-17x+33\right)\)
Các Pro giúp mình với !
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
giải các pt sau
x\(^2+5x+\sqrt{x^2+5x+4}=2\)
\(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
a,ĐK: x≥-1
Đặt \(t=\sqrt{x^2+5x+4}\left(t\ge0\right)\)
⇒ \(t^2+t-6=0\)
\(\Leftrightarrow\left(t+3\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-3\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x^2+5x+4}=2\)
\(\Leftrightarrow x^2+5x+4=4\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-5\left(loại\right)\end{matrix}\right.\)
b,ĐK: \(0\le x\le2\)
Ta có: \(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
\(\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\) (1)
Đặt \(t=\sqrt{x^2+3x}\left(t\ge0\right)\)
\(\Rightarrow\left(1\right)\Leftrightarrow-t^2+10-3t=0\)
\(\Leftrightarrow\left(t+5\right)\left(2-t\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-5\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x^2+3x}=2\)
\(\Leftrightarrow x^2+3x=4\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(loại\right)\\x=1\left(tm\right)\end{matrix}\right.\)
Giải PT:
a)\(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
b)\(2\left(x^2+2\right)=5\sqrt{x^3-1}\)
c)\(x^2-3x+1=\frac{5\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
MONG CÁC BẠN GIẢI NHANH GIÚP MÌNH
GIẢI = CÁCH ĐẶT ẨN PHỤ HOÀN TOÀN
a/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
\(\Rightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Rightarrow\left(-2\right)\left(x+2\right)+2\left(x^2-2x+4\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Chia 2 vế cho x2 - 2x + 4 ta được:
\(\left(-2\right).\frac{x+2}{x^2-2x+4}+2=3\sqrt{\frac{x+2}{x^2-2x+4}}\)
Đặt \(a=\sqrt{\frac{x+2}{x^2-2x+4}}\left(a\ge0\right)\) ta được:
\(-2a^2-3a+2=0\Rightarrow\left(1-2a\right)\left(a+2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{2}\left(n\right)\\a=-2\left(l\right)\end{cases}}\)
\(a=\frac{1}{2}\Leftrightarrow\sqrt{\frac{x+2}{x^2-2x+4}}=\frac{1}{2}\Rightarrow\frac{x+2}{x^2-2x+4}=\frac{1}{4}\)
\(\Rightarrow x^2-6x-4=0\Rightarrow\orbr{\begin{cases}x=3+\sqrt{13}\\x=3-\sqrt{13}\end{cases}}\) (cái này tính denta là ra kết quả thôi)
Vậy có 2 nghiệm trên
câu b, c tương tự thôi
Các bạn giúp mình 2 câu này với
A.3x + x( x - 4 )= 12
4x^4 - 5x^2 - 9 = 0
Cởm ơn mọi người mình là thành viên mới mong mọi người giúp đỡ
chào tv mới
caua, 3x+x^2-4x=12
x^2-x-12=0
x^2-4x+3x-12=0
x(x-4)+3(x-4)=0
(x+3)(x-4)=0
x=-3 hoặc x=4
LƯU YS: từ chỗ mik biến đổi thành pt bậc 2 bn tính theo đenta cx đc, đây mik làm cách phân tích thành tích cho ngắn gọn
\(a,3x+x\left(x-4\right)=12\)
\(\Leftrightarrow3x+x^2-4x-12=0\)
\(\Leftrightarrow x^2-x-12=0\)
\(\Delta=b^2-4ac=\left(-1\right)^2-4.1.\left(-12\right)=49>0\)
Vậy phương trình có 2 nghiệm phân biệt:
\(\orbr{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-1\right)+\sqrt{49}}{2.1}=4\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-1\right)-\sqrt{49}}{2.1}=-3\end{cases}}\)
Các bạn giải giúp mình câu này nhé. minh cam on nhieu
Cho pt sau: \(\left(x^2+3x+2\right)\left(x^2+9x+20\right)-m+1=0\) (1)
a, Giải pt vs m=5
b, Tìm các giá trị của m để pt (1) có nghiệm thỏa \(^{x^2+6x+7\le0}\)
a) với m=5
Phân tích kiểu pháp
đăt x^2+6x+11=t
[t-3(x+3)][(t+3(x+3)]
[t^2-9(x+3)^2]-4
(t^2-4)-9(x+3)^2
(t-2)(t+2)-9(x+3)^2
(t+2)(x+3)^2-9(x+3)^2
(x+3)^2(t-7)=0
\(\orbr{\begin{cases}x+3=0\Rightarrow x=-3\\t-7=0\Rightarrow x^2+6x+4=0\end{cases}}\)
\(\left(x+3\right)^2=5\Rightarrow\orbr{\begin{cases}x=-3+\sqrt{5}\\x=-3-\sqrt{5}\end{cases}}\)
b/ \(\left(x^2+3x+2\right)\left(x^2+9x+20\right)-m+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-m+1=0\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-m+1=0\)
Đặt: x2 + 6x + 5 = a
Từ đây ta có đề trở thành.
Tìm các giá trị m để pt
a(a + 3) - m + 1 = 0
<=> a2 + 3a - m + 1 = 0 (1)
Có nghiệm thõa
a + 2 \(\le\)0 <=> a \(\le\)- 2
Dùng ∆ nhé. Bạn làm tiếp nhé.
Điều kiện để pt (1) có nghiệm thỏa cái đó mình nghĩ bạn làm được :)
Tiếp(@alibaba)
Thử sức:
a^2+3a-m+1=0 (1)có nghiệm a<=2 (*)
\(\left(1\right)\Leftrightarrow\left(a^2+2.\frac{3}{2}a+\frac{9}{4}\right)=\left(m-1+\frac{9}{4}\right)\Leftrightarrow\left(a+\frac{3}{2}\right)^2=\left(m+\frac{5}{4}\right)=t\)
Để có nghiệm => t>=0=> m>=-5/4 (**)
Khi m>-5/9 có nghiệm
\(a+\frac{3}{2}=+-\sqrt{t},\)
\(a_1=-\frac{3}{2}-\sqrt{t};,,,a_2=-\frac{3}{2}+\sqrt{t}\)
hiển nhiên a1 <a2
cần 1 một nghiệm thỏa (*) nên ta có
\(-\frac{3}{2}-\sqrt{t}\le-2\Rightarrow\sqrt{t}\ge\frac{-3}{2}+2=\frac{1}{2}\Rightarrow t\ge\frac{1}{4}\Rightarrow m\ge\frac{1}{4}-\frac{5}{4}=-1\)
Từ (*)(**) kết luận M>=-1